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Abstract:  This paper advances efforts to explicate and improve inference in qualitative research 
that iterates between theory development, data collection, and data analysis, rather than 
proceeding linearly from hypothesizing to testing. We draw on the school of Bayesian 
“probability as extended logic” from the physical sciences, where probabilities represent rational 
degrees of belief in propositions given limited information, to provide a solid foundation for 
iterative research that has been lacking in the qualitative methods literature.  We argue that 
mechanisms for distinguishing exploratory from confirmatory stages of analysis that have been 
suggested in the context of APSA’s transparency initiative are unnecessary for qualitative 
research that is guided by logical Bayesianism, because new evidence has no special status 
relative to old evidence for testing hypotheses within this inferential framework.  Bayesian 
probability not only fits naturally with how we intuitively move back and forth between theory 
and data, but also provides a framework for rational reasoning that mitigates confirmation bias 
and ad-hoc hypothesizing—two common problems associated with iterative research.  Moreover, 
logical Bayesianism facilitates scrutiny of findings by the academic community for signs of 
sloppy or motivated reasoning.  We illustrate these points with an application to recent 
qualitative research on state building. 
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1. Introduction 
In the context of the replicability crisis, APSA’s transparency initiative, and surrounding 

debates (www.dartstatement.org, www.qualtd.net), scholars have sought to revalue, explicate, 
and improve inference in qualitative research that proceeds in an inherently iterative manner, 
where prior knowledge informs hypotheses and data gathering strategies, evidence inspires new 
or refined hypotheses along the way, and there is continual feedback between theory and data.2  
This iterative style of research, which is common in process tracing and comparative historical 
analysis, diverges from prevailing norms that mandate clearly differentiating and sequencing 
theory-building (exploratory, inductive) and theory-testing (confirmatory, deductive) stages of 
research.  Theory-testing requires new data that did not contribute to inspiring hypotheses, and 
any deviations from a specified research design should be reported (e.g., Humphreys et al. 
2013:1, Monogan 2015).  Furthermore, theory testing is generally granted higher status (Bowers 
et al. 2015:7, Lieberman 2016:1057, Jacobs 2017:14).3  

Advocates of iterative qualitative research have suggested the key to enhancing its status 
and improving inference lies in finding ways to conform to the norms of differentiating 
exploration from confirmation and testing theory with new evidence.  Scholars have called for 
greater transparency about analytical sequencing (Yom 2015:11, Büthe and Jacobs 2015:55) and 
advocate various mechanisms for keeping track of when a hypothesis was devised relative to 
specific stages of data collection, including pre-registration (Bowers et al. 2015, Jacobs 2017) or 
maintaining logs that time-stamp data as “used” or “unused” over the course of fieldwork and 
analysis (Kapiszewski et al. 2015b).  Meanwhile, the recent joint-committee proposal for a 
political science registry from members of APSA’s Political Methodology, Qualitative and 
Multi-Method Research, and Experimental Research sections asserts: “The basic analytical 
difference between induction and testing is as relevant to qualitative analysis as to quantitative.  
...The clearest evaluation of explanatory or theoretical propositions derives from a new set of 
observations, independent of those that inspired the propositions in the first place,” (Bowers et 
al. 2015:15).  Similar suggestions have been raised during the Qualitative Transparency 
Deliberations.   

This paper presents a different view of iterative research that is grounded in Bayesian 
probability.  We draw on expositions of “probability as extended logic” from the physical 
sciences (Cox 1961, Jaynes 2003),4 where probabilities represent rational degrees of belief in 
propositions given the inevitably limited information we possess.  From a logical Bayesian 
perspective, prescriptions for separating theory-building from theory-testing draw on false 
dichotomies between old vs. new evidence and inductive vs. deductive reasoning.  Theory 
testing—understood in Bayesian terms as inference to best explanation using probabilistic 
reasoning—takes all evidence into account, regardless of whether or not it was known to the 
investigator at the time hypotheses were devised; new evidence has no special status relative to 
old evidence.  Scientific inference invariably entails a “dialogue with the data,” where we go 
back and forth between theory development, data collection, and data analysis, rather than a 
linear sequence from hypothesizing to testing.  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
2 Iterative research occurs not just in qualitative research, but throughout comparative politics and political science 
(Laitin 2013:44, Yom 2015, Kapiszewski et al. 2015:336, Büthe and Jacobs 2015:53, Lieberman 2016:1057). 
3 Lieberman notes an “unspoken presumption that the best work ought to be confirmatory or a test of an ex-ante 
specified hypothesis.”  
4 This approach can also be found in machine learning (MacKay 2003), econometrics (Zeller), and other fields. 
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Our perspective highlights and aims to resolve an underlying tension in contemporary 
efforts to understand and improve qualitative research.  On the one hand, much of the best such 
research implicitly and intuitively, albeit not consciously, approximates the logic of Bayesian 
reasoning.5  On the other hand, proposals advocating crisp delineations between exploratory and 
confirmatory research are grounded in the frequentist inferential framework that underpins most 
large-N analysis—a framework that is inapplicable to small-N case-study analysis.  Whereas 
separating theory-building from theory-testing is imperative within frequentism, it is unnecessary 
for Bayesian inference. 

Accordingly, this paper aims to make two central contributions.  First, we advance efforts 
to revalue iterative research by elucidating its Bayesian foundations and thereby providing a 
solid methodological basis that is currently lacking in the qualitative methods literature.  Second, 
we explicate the safeguards Bayesianism provides against confirmation bias and ad-hoc 
hypothesizing, which make firewalls between theory building and theory testing unnecessary.  
We therefore argue that time-stamping and pre-registration (binding or non-binding) are not 
useful tools in qualitative research, regardless of the practical (in)feasibility of these approaches 
in particular research programs (e.g. analysis of existing historical data vs. generation of original 
data through expert interviews). We hope this paper will help inform ongoing discussion among 
multi-method and qualitative scholars on the nature of inference in case-study research, as well 
as the relative costs and analytical benefits of measures that have been suggested for improving 
research transparency, beyond advocating transparency for transparency’s sake.   

We begin by overviewing the trajectory of methodological thinking on iterative research 
and situating our contribution within recent work on Bayesian process tracing (§2).  We then 
introduce the “logical” approach to Bayesian probability (§3).  We clarify how this framework 
differs from the frequentist paradigm, and we elucidate fundamental tenets of logical 
Bayesianism that mitigate the need for distinctions between exploratory and confirmatory 
research.  The key lies in recognizing that the terms “prior” and “posterior,” as applied to our 
degree of belief in whether a proposition is true or false, are not temporal notions.  Instead, they 
are purely logical concepts that refer to whether we have incorporated a given body of evidence 
into our analysis via Bayes’ rule.  Section 4 illustrates these points with an application to recent 
qualitative research on state building.  

Section 5 considers potential concerns regarding our arguments that within a logical 
Bayesian framework, there is no need to keep track of what the investigator knew when and that 
“old” evidence is just as good as “new” evidence for assessing rival hypotheses. Our response 
emphasizes that Bayesian probability in and of itself provides a framework for rational reasoning 
in the face of uncertainty that simultaneously helps inoculate against cognitive biases and opens 
analysis to scrutiny by other scholars for signs of such pitfalls.  While there are no magic bullets 
for ensuring and signaling honest and unbiased assessments of evidence in practice, drawing on 
Bayesian reasoning more consciously in qualitative research, discussing rival explanations more 
explicitly, and openly addressing observations that run counter to overall conclusions could help 
further those goals.  
 

 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
5 While we recognize that a wide range of epistemological views are debated within qualitative methods, we follow 
Humphreys and Jacobs (2015:672), Bennett (2015:297), and Fairfield and Charman (2017) in espousing 
Bayesianism as the most appropriate logic of inference and contending that to the extent narrative-based qualitative 
research makes valid causal inferences, it implicitly follows Bayesian reasoning. 



Fairfield & Charman                V4.0 

	   3 

2. Perspectives on Iterative Research in Qualitative Social Science 
Iterative research has a long tradition in social science.  Classic methodological discussions 

include Glaser and Strauss (1967) and Ragin (1997), which emphasize jointly collecting and 
analyzing data while developing and refining theory and concepts.  Yet these authors largely 
describe their goal as theory building, not theory testing or some combination thereof.  Glaser 
and Straus (1967:103) for example remark that theory testing entails “more rigorous approaches” 
that “come later in the scientific enterprise.”      

Differentiating between theory building and testing remains prevalent even in qualitative 
methods literature that questions KKV’s (1994) application of standards from large-N statistical 
inference to case studies.  Ragin (1997:3) expressly criticizes KKV’s (1994:22) assertion that 
“we should not make it [our theory] more restrictive without collecting new data to test the new 
version of the theory,” but his response stops short of providing a methodological rationale; he 
simply notes the infeasibility of KKV’s prescription: “When the number of relevant cases is 
limited by the historical record to a mere handful...it is simply not possible to collect a ‘new 
sample’ to ‘test’ each new theoretical clarification.”  Brady and Collier’s (2010) groundbreaking 
volume stresses the contribution of inductive research to theory innovation and notes: “for 
qualitative researchers, the refinements of theory and hypotheses through the iterated analysis of 
a given set of data is an essential research tool,” (Collier, Seawright & Munck 2010:62).  But in 
emphasizing tradeoffs between different objectives, the volume leaves the dichotomy between 
theory development and theory testing largely intact.   

Similarly, contemporary process-tracing literature retains language that discriminates 
between induction and deduction.  Authors refer to inductive vs. deductive process tracing 
(Bennett and Checkel 2015:7-8, Schimmelfennig 2015:101), theory-building vs. theory-testing 
process tracing (Beach and Pedersen 2013), and similar variants (Mahoney 2015, Bowers et al. 
2015:15).  Even when acknowledging that process tracing in practice involves a complex 
combination of both theory construction and evaluation, these modes are still treated as 
analytically distinct (Mahoney 2015:201-02) and ideally sequential, where “inductive discovery 
is followed by deductive process tracing” using “evidence independent of that which gave rise to 
the theory,” (Bennett and Checkel 2014:268).6   

The relationship between theory building and theory testing is receiving renewed attention 
in the context of debates over transparency and the crisis of replicability.  Yom’s (2015:4) 
valuable contribution seeks to elevate the status of disciplined “inductive iteration” while 
highlighting “truly destructive” practices like “data mining, selective reporting, and ignoring 
conflicting results.”  Yet like previous authors, he does not articulate a clear methodological 
foundation for iterative research.  Yom’s (2015:11) emphasis on “transparency in practice,” 
which calls for scholars to report when they “had to reconceptualize a causal mechanism as new 
information comes to light, ...tighten a theoretical argument in light of how rival explanations 
perform with the data, or rewrite a process-tracing narrative due to an initial misunderstanding,” 
essentially falls back on the linear research template he critiques, in that the only rationale for 
requiring such information about the temporal trajectory of the intellectual process lies in 
standard prescriptions to test inductively-inspired theory with new evidence, otherwise we are 
promoting transparency purely for the sake of transparency.  While we agree that scholars should 
be forthright when conducting iterative research, we will argue that there are few analytical 
benefits to reporting temporal details about how the research process unfolded. 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
6 Van Evera (1997:45-6) offers a dissenting view. 
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In reevaluating the relationship between theory building and theory testing, we take 
inspiration not only from the physical sciences but also from early work on Bayesian 
underpinnings of case-study research.  McKeown (1999) instigated a pioneering methodological 
agenda by observing that KKV’s statistical world-view is at odds with a logic of “folk 
Bayesianism” that governs case study research: 

Researchers in the social sciences... are ‘interactive processors.’ They move 
back and forth between theory and data, rather than taking a single pass through 
the data.  ...one can hardly make sense of such activity within the confines of a 
classical theory of [frequentist] statistics.  A [Bayesian] theory of probability 
that treats it as a process involving the revision of prior beliefs is much more 
consistent with actual practice...  

Subsequent scholarship makes important strides towards explicitly applying Bayesian reasoning 
in process tracing (Bennett 2015, Humphreys and Jacobs 2015, Fairfield and Charman 2017).  
Yet this research has not yet explored the implications of McKeown’s central observation about 
moving back and forth between theory and data.  Formal treatments of Bayesian process tracing 
have been cast in a deductive, theory-testing framing that emphasizes prospective anticipations 
about the evidence we might encounter, without elucidating the importance of inferential 
feedback and the role played by induction in conjunction with retrospective analysis of data 
actually obtained.      

We build on McKeown’s insights by arguing that logical Bayesianism provides a firm 
methodological foundation for iterative research.  In the apt phrase of astrophysicist Stephen 
Gull, Bayesian analysis involves a “dialogue with the data” (quoted in Sivia 2006).  We draw 
new insights through a continuous, iterative process of analyzing data differently and/or more 
deeply, revising and refining theory, asking new questions, and deciding what kinds of additional 
data to collect.  Inference is always provisional, in that theories are rarely definitively refuted and 
never definitively confirmed—they are constantly amended in light of new ideas and new data.  
But in these inferential cycles we never “use up” or “throw away” previous information—
Bayesianism mandates learning from accumulated knowledge by virtue of the fact that all 
probabilities must be conditional probabilities that take into account all known information 
relevant to the question of interest.  Confidence in one proposition depends on what else we 
know and generally changes when we make new observations.  There is no need within logical 
Bayesianism to temporally sequence inductive and deductive stages of reasoning.  Bayes’ rule 
allows us to move back and forth fluidly between reasoning about the empirical implications of 
hypotheses and drawing inferences about possible causes from observed effects, and Bayesian 
probability allows us to assess the weight of evidence whether it was collected before or after 
formulating hypotheses.    
  

3. The Bayesian Logic of Iterative Research 

We begin by reviewing conceptual distinctions between Bayesianism and frequentism, the 
dominant approach to quantitative  inference which often informs how qualitative research is 
evaluated, and introducing the logical school of Bayesianism, which provides a prescription for 
rational reasoning given incomplete information (§3.1).  We then briefly review the 
mathematical framework of Bayesian inference (§3.2).  Section 3.3 resolves the false 
dichotomies of new vs. old evidence and deductive vs. inductive research by focusing on the 
logical—not temporal—nature of “prior” and “posterior” probabilities.  Section 3.4 discusses 
safeguards built into logical Bayesianism that help curtail confirmation bias and ad-hoc 
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hypothesizing—two potential pitfalls often associated with iterative research that underpin 
conventional guidelines that theory building must be segregated from theory testing.    

 
3.1 Bayesian Foundations     

Frequentism conceptualizes probability as a limiting proportion in an infinite series of 
random trials or repeated experiments.  For example, the probability that a die shows “2” on a 
given throw would be equated with the fraction of times it turns up “2” in an infinite sequence of 
throws.  In this view, probability reflects a state of nature—e.g, a property of the die (fair or 
weighted) and the throwing process (random or rigged).  In contrast, Bayesianism understands 
probability as a degree of belief.  Two individuals observing the same die might rationally assign 
different probabilities to the proposition “the next throw will produce 2,” based on whatever 
information they know about the die and throwing procedure.   

The Bayesian notion of probability offers multiple advantages—most centrally: it is much 
closer to how people intuitively reason in the face of uncertainty; it can be applied to any 
proposition, including causal hypotheses, which would be nonsensical from a frequentist 
perspective; it is well-suited for explaining unique events, working with a small number of cases, 
and/or analyzing limited amounts of data; and inferences can be made using any relevant 
information, above and beyond data generated from stochastic processes.  These features make 
Bayesianism especially appropriate for qualitative research, which evaluates competing 
explanations for complex sociopolitical phenomena using evidence that cannot naturally be 
conceived as random samples (e.g., information from expert informants, legislative records, 
archival sources). Strictly speaking, frequentist techniques are unsuitable for such data.  In 
Jackman and Western’s (1994:413) words: “frequentist inference is inapplicable to the 
nonstochastic setting.”       

  The school of Bayesianism we advocate as the methodological foundation for scientific 
inference—logical Bayesianism—seeks to represent the rational degree of belief we should hold 
in propositions given the information we possess, independently of hopes, subjective opinion, or 
personal predilections.  In ordinary logic, the truth-values of all propositions can be known with 
certainty.  But in most real-world contexts, we have limited information, and we are always at 
least somewhat unsure about whether a proposition is true or false.  Bayesian probability is an 
“extension of logic” (Jaynes 2003) in that it provides a prescription for how to reason when we 
have incomplete knowledge and are thus uncertain about the truth of a proposition.  When our 
degrees of belief assume limiting values of zero (impossibility) or one (certainty), Bayesian 
probability automatically reduces to ordinary logic.    

A central tenet of logical Bayesianism is that probabilities should encode knowledge in a 
unique, consistent manner.  Incorporating information in different but logically equivalent ways 
(e.g. learning the same pieces of information in different orders) must produce identical 
probabilities, and individuals who possess the same information must assign the same 
probabilities.  Cox (1961), Jaynes (2003), and subsequent scholars (e.g. Gregory 2005) show that 
if we represent our level of confidence in the truth of propositions with real numbers and impose 
these consistency requirements, we are led directly to the sum and product rules of probability, 
which in turn give rise to all other operations within Bayesian analysis for manipulating and 
updating probabilities.   

The consistency requirements of logical Bayesianism are more demanding than 
requirements imposed in social-science approaches that draw on the “psychological” or 
“subjective” school of Bayesianism common in philosophy of science and conventional 
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Bayesian statistics textbooks.  In this latter approach, rationality requires degrees of belief to 
follow the sum rule and product rule of probability, such that utility-maximizing gamblers 
decline “Dutch Book” bets (where loss is certain). But as long as probabilities satisfy these rules, 
they can be based on pure psychology—whatever happens to motivate an individual to hold 
some particular subjective degree of belief. Accordingly, within psychological Bayesianism, 
individuals possessing the same information need not assign identical probabilities.   

We will show that the consistency requirements are the key to understanding the powerful 
methodological foundation that logical Bayesianism provides for iterative research.  First, 
however, we review the mechanics of Bayesian inference.     

 
3.2. Bayesian Inference in Brief  

 Bayesian inference generally proceeds by assigning “prior” probabilities to a set of 
plausible rival hypotheses using all relevant background information we possess.  These prior 
probabilities represent our degree of confidence in the truth of each hypothesis taking into 
account salient knowledge accumulated from previous studies and/or experience.  We then 
consider evidence obtained during the investigation at hand.  The evidence includes all relevant 
observations (beyond our background information) that bear on the plausibility of our 
hypotheses.  We ask how likely the evidence would be if a particular hypothesis were true, and 
we update our beliefs in light of that evidence using Bayes’ rule to derive “posterior” 
probabilities on our hypotheses.   

Formally, Bayes’ rule is expressed in terms of conditional probabilities P(A|B), 
representing the rational degree of belief in proposition A if we consider B to be true.  Bayes’ 
rule is a rearrangement of the product rule of probability:   
P(AB)=P(BA)=P(A|B)×P(B)=P(B|A)×P(A).            (1) 

For a hypothesis H, evidence E, and background information I, Bayes’ rule states:           
P(H|EI)=P(H|I)×P(E|HI) ⁄P(E|I),               (2) 

where P(H|EI) is the posterior probability on the hypothesis given the evidence and the 
background information, P(H|I) is the prior probability on the hypothesis given our background 
information alone, P(E|HI) is the likelihood of the evidence—the conditional probability of the 
evidence given the hypothesis and the background information—and P(E|I) is the unconditional 
likelihood of the evidence (regardless of whether H is true).     

Because causal inference always involves comparing hypotheses,7 it is easier to work with 
the odds-ratio form of Bayes’ rule: 
𝑃 𝐻! 𝐸𝐼
𝑃 𝐻! 𝐸𝐼

=
𝑃 𝐻! 𝐼)
𝑃 𝐻!|𝐼

×
𝑃 𝐸 𝐻!𝐼
𝑃 𝐸 𝐻!𝐼

                                                                                                                                                                                                                                                                                (3)  

 

The factor on the left-hand side of equation (3) is the posterior odds on hypothesis Hi  relative to 
Hj in light of the evidence.  The posterior odds equals the prior odds (the first factor on the right-
hand side) multiplied by the likelihood ratio (the second factor on the right-hand side).   

Assessing the likelihood ratio, P(E|HiI)/P(E|HjI), is the key inferential step that tells us 
whether the evidence should make us more or less confident in one hypothesis relative to 
another.  The likelihood ratio can be thought of as the probability of observing evidence E in a 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
7 In practice we cannot evaluate P(E|I) in equation (2) unless I  restricts our attention to a finite number of plausible 
rival hypotheses.  
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hypothetical world where Hi is true, relative to the probability of observing E in an alternative 
world where Hj is true (recall that in the notation of conditional probabilities, all conditioning 
information that appears to the right of the vertical bar is taken to be true when assessing degrees 
of belief).  In qualitative research, we need to “mentally inhabit the world” of each hypothesis 
(Hunter 1984) and ask how surprising (low probability) or expected (high probability) the 
evidence would be in each respective world.  If the evidence is less surprising in the “Hi world” 
relative to the “Hj world,” then that evidence will increase the odds we place on Hi vs. Hj, and 
vice versa.  We gain confidence in one hypothesis vs. another to the extent that it makes the 
evidence we find more plausible.       

Elsewhere, we elaborate guidelines for formal Bayesian analysis in qualitative research, 
which entails quantifying all probabilities.  To illustrate how Bayesian logic can be applied 
heuristically (without quantification), consider an example drawing on Kurtz’s state-building 
research (2009).  We wish to ascertain whether the resource-curse hypothesis, or the warfare 
hypothesis (assumed mutually exclusive), better explains institutional development in Peru:  

HR =Mineral resource abundance is the central factor hindering institutional development.  
Easy money from mineral exports precludes the need to collect taxes and creates 
incentives to spend public resources on inefficient subsidies and patronage networks, 
instead of investing in administrative capacity.    

HW =Absence of warfare is the central factor hindering institutional development. Threat 
of conquest requires states to extract resources from society and develop strong 
administrative capacity in order to build and sustain armies. In the absence of external 
threats, state leaders lack these institution-building incentives.   

For simplicity, suppose we have no relevant background knowledge about state-building in Peru.  
Since both hypotheses find substantial support in literature on other countries, we might 
reasonably assign even prior odds.  We now learn the following:  

E1=Peru was consistently threatened by international military conflict following 
independence, its economy has been dominated by mineral exports since colonial days, 
and it never developed an effective state.  

Intuitively, this evidence strongly favors the resource-curse hypothesis.  Applying Bayesian 
reasoning, we must evaluate the likelihood ratio P(E1|HRI)/P(E1|HWI).  Imagining a world where 
HR is the correct hypothesis, mineral dependence in conjunction with weak state capacity is 
exactly what we would expect.  Furthermore, although HR makes no direct predictions about 
presence or absence of warfare, external threats are not surprising given that a weak state with 
mineral resources could be an easy and attractive target.  In the alternative world of HW, 
however, the evidence would be quite surprising; something very unusual, and hence 
improbable, must have happened for Peru to end up with a weak state if the warfare hypothesis is 
nevertheless correct, because weak state capacity despite military threats contradicts the 
expectations of the theory.  Because the evidence is much more probable under HR relative to 
HW, the odds in favor of HR increase substantially, even though the evidence does not exhibit the 
resource-curse logic in action.   
 
3.3.  Prior vs. Posterior Probabilities and Old vs. New Evidence 

While testing hypotheses with new evidence is pervasively espoused, distinctions between 
old vs. new evidence (relative to the formulation of hypotheses), and hence exploratory vs. 
confirmatory research, are far less consequential within logical Bayesianism.  To be clear, “new 
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evidence” refers to information that was unknown to the scholar before the hypothesis was 
devised regardless of the historical timing of when that information was generated.  For example, 
in Figure 1, E1 is old evidence relative to H, whereas E2 is new evidence, even though E2 existed 
in the world before E1.     

 
Figure 1 

 

 
 
The key to unraveling the false dichotomies lies in understanding that the terms prior and 

posterior are not temporal notions—they are logical notions.  In the words of astrostatistician 
Tom Loredo (1990:87):   

There is nothing about the passage of time built into probability theory. Thus, 
our use of the terms... ‘prior probability,’ and ‘posterior probability’ do not 
refer to times before or after data is available. They refer to logical 
connections, not temporal ones. Thus, to be precise, a prior probability is the 
probability assigned before consideration of the data.   

To reiterate these crucial points, the descriptions prior and posterior refer to degrees of belief 
before and after a piece of evidence is incorporated into our analysis—not to the timing of when 
we happened to learn or obtain that piece of evidence.  Prior and posterior refer simply to 
idealized states of knowledge without and with specific pieces of evidence included.  Of course, 
hypotheses can contain temporal structuring, and evidence can contain information about timing.  
However, probabilities themselves carry no intrinsic time-stamps.  

These points merit expounding. Recall that within logical Bayesianism, only the data at 
hand and the background knowledge are relevant for assessing the reasonable degree of belief 
that is warranted in a hypothesis.  Nothing else about our state of mind, hopes, or predilections 
should influence the probabilities we assign.  The relative timing of when we stated the 
hypothesis, worked out its potential implications, and gathered data falls into this later category 
of logical irrelevance when assigning and updating probabilities.   

To further stress the logical irrelevance of keeping track of what we knew when, notice that 
the rules of conditional probability mandate that we are free to incorporate evidence into our 
analysis in any order without affecting the final posterior probabilities we derive via probability 
theory. Using the product rule (1) and commutativity, the joint likelihood of two pieces of 
evidence can be written in any of the following equivalent ways:  

P(E1E2|HI)=P(E2E1|HI)=P(E1|E2HI)×P(E2|HI)=P(E2|E1HI)×P(E1|HI).            (4) 
Evidence learned at time one (E1) may thus be treated as logically posterior to evidence learned 
at time two (E2), if we choose to incorporate E2 into our analysis before E1.  If in practice 
conclusions are found to differ depending on the order in which evidence was incorporated, there 
is an error in our reasoning somewhere that should be corrected.  Otherwise we have violated the 
fundamental notion of rationality that lies at the heart of logical Bayesianism (§3.1)—
information incorporated in equivalent ways should lead to the same conclusions.  

Once we recognize that timing is not relevant in probability theory, it follows that each of 
the analytical steps below is a logically distinct endeavor: 

Figure 1. Old vs. New Evidence 
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• drawing on evidence E  to inspire hypotheses; 
• assigning prior probabilities to those hypotheses given background information I that 

does not include E; 
• assessing the likelihood of evidence E under alternative hypotheses in order to derive 

posterior probabilities. 
Information is neither “exhausted” nor “double-counted” in this inferential process. All relevant 
knowledge can be sorted as convenient into background information I on which all probabilities 
in Bayes’ theorem are conditioned, and evidence E that we use to update probabilities.   

Psychological/subjective approaches to Bayesianism often diverge from logical 
Bayesianism on these points, because the former focus on individuals’ personal degrees of belief 
and how their psychological states evolve over time.  Jeffrey’s (1983) “probability kinematics” is 
a prominent example; his approach introduces non-standard rules for updating that violate the 
laws of probability (4) and hence imply that the order in which evidence is analyzed does matter.   

Another salient example from psychological/subjective Bayesianism is the “problem of old 
evidence” in philosophy of science (e.g., Glymour 1980, Earman 1992).  Glymour argued that if 
probabilities are evaluated at a time when the evidence E is known, then P(E|I)=1, which in turn 
directly implies that P(E|HI)=1.  Substituting into Bayes’ rule (2), he then find that 
P(H|EI)=P(H|I), such that “old” evidence purportedly cannot alter our degree of belief in 
hypothesis H.  From a logical Bayesian perspective, the flaw in this reasoning lies in confusing 
temporal relationships with logical ones.  If we wish to evaluate probabilities in the light of 
knowing evidence E, then E must appear as conditioning information.  In essence, Glymour can 
only assert that P(E|EI)=1, and his argument collapses, because Bayes’ rule accordingly yields 
P(H|EEI)=P(H|EI)×P(E|HEI)/P(E|EI)=P(H|EI), which we already knew from EE=E.  As 
astrophysicist Bill Jefferys (2007:7) notes, “what Glymour has actually proved is the (well-
known) fact that...quite sensibly...[we] cannot validly manipulate the Bayesian machinery to get 
additional information out of information that has already been used.”  The crucial point is that 
when evaluating probabilities, the conditioning information does not include whatever is in our 
heads at a particular moment in time.  Instead, we condition on propositions located to the right 
of the vertical bar, which are explicitly specified and assumed to be true.   

In probability theory, we must keep track of what information has been incorporated into 
our analysis, not the time at which that information was acquired. The “problem of old evidence” 
is therefore a red herring.  Time-stamps indicating when hypotheses were composed or when 
evidence was observed or incorporated are not relevant to the logic of scientific inference.8      
 
3.4. Curtailing Confirmation Bias and Ad-hoc Theorizing     

Legitimate concerns about objectivity, rigor, and transparency underlie prescriptions that 
theory building and theory testing should proceed sequentially, observable implications of 
hypotheses should be identified before gathering data, and hypotheses should be tested on new 
evidence.  However, careful application of Bayesian logic can itself help guard against both 
confirmation bias and ad-hoc hypothesizing—two of the most salient pitfalls commonly 
associated with iterative research.  

Among multiple variants of confirmation bias (Nickerson 1998, Klayman 1995), two 
common tendencies entail focusing too much on data that fits a particular hypothesis and/or 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
8 In natural sciences, hypotheses often derive support from evidence known long before they were developed; for 
example, quantum mechanics was devised to explain known facts about blackbody radiation, atomic stability, and 
the photoelectric effect.   
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overlooking data that casts doubt on it, and focusing on only a single favored hypothesis while 
forgetting to consider whether data consistent with that hypothesis might be equally or more 
supportive of a rival hypothesis.  A common recommendation for precluding such biases entails 
identifying observable implications of rivals as well as the main working hypothesis before 
gathering data.9  However, this advice can be problematic for two reasons.   

First, deducing observable implications beforehand may be infeasible, because any 
hypothesis may be compatible with a huge number of possible evidentiary findings—just with 
varying probabilities of occurrence.  In the context of qualitative research on complex socio-
political phenomena, there is essentially no limit to the different kinds of evidence we might 
encounter, and there is no way to exhaustively catalogue the infinite possibilities in advance.   

Second, anticipating observable implications may foster even greater bias.  If we have 
conducted the exercise of spelling out hypotheses to be considered and evidence expected under 
each, we are now better situated to seek out the sorts of evidence that will support our pet theory, 
compared to a situation where we collect evidence without necessarily anticipating what will 
support which hypothesis.  This caveat is classic advice from Sherlock Holmes: “It is a capital 
mistake to theorize before one has data. Insensibly one begins to twist facts to suit theories, 
instead of theories to suit facts,” (A Scandal in Bohemia).    

Risks of confirmation bias can be better controlled by conscientiously endeavoring to 
follow logical Bayesian reasoning.  First and foremost, tendencies to seek evidence that supports 
a favored hypothesis, interpret evidence as overly favorable to that hypothesis, and underweight 
evidence that runs against that hypothesis are counteracted by following the prescription to 
condition probabilities on all relevant information available, without presuming anything beyond 
what is in fact known, or bringing mere opinions or desires into the evaluation.  Furthermore, 
remembering that the key inferential step in Bayesian inference entails assessing likelihood 
ratios of the form P(E|HjI) ⁄P(E|HkI) precludes the pitfall of restricting attention to a single 
hypothesis—we must always ask whether a given explanation makes the evidence more or less 
likely compared to a rival explanation.  

In contrast to confirmation bias, the complementary problem of ad-hoc hypothesizing 
involves over-tailoring an explanation to fit a particular, contingent set of observations.  This 
danger underpins calls for distinguishing exploration from confirmation and testing hypotheses 
with new data.  Within logical Bayesianism, however, an ad-hoc hypothesis that is too closely 
tailored to fit arbitrary details of the data incurs a low prior probability, which protects us from 
favoring it over a simpler hypothesis that adequately explains the data.  If an explanation is ad-
hoc, careful consideration should reveal that it is just one member of a large family of more or 
less equally ad-hoc hypotheses, characterized by multiple parameters or arbitrary choices that 
must be fine-tuned to the data.  Each of these related hypotheses might explain a different set of 
contingent facts, yet none of them would seem any more credible than the others in the absence 
of the particular body of observations obtained.  Even if the overall prior probability of the 
family of hypotheses {H1 or H2 or...HN} is appreciable, this prior probability must be spread over 
all of the constituent possibilities, such that the prior for any particular Hi will be small.    

Consider an example adapted from Jefferys (2003).  A stranger at a party shuffles a deck of 
cards, and you draw the six of spades.  We might reasonably hypothesize that this card was 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
9 Re. process-tracing, see Bennett and Checkel (2015:18), Bennett and Elman (2006:460).  Specifying observable 
implications deductively is widely advocated, often without any explicit link to avoiding confirmation bias, and 
sometimes with regard only to the working hypothesis (e.g. Schimmelfennig 2015:108, Beach and Pedersen 
2014:20, Rohlfing 2012:187).  
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arbitrarily selected from a randomly-shuffled deck (HR).  A rival hypothesis proposes that the 
stranger is a professional magician relying on a trick deck that forces you to draw the six of 
spades (H6♠).  While the likelihood of selecting this particular card is 1/52 under HR, it is far 
larger under H6♠.  However, H6♠ must be penalized by a factor of 1/52 relative to HR, because 
without observing your draw, there would be no reason to predict the six of spades as the 
magician’s forced card.  H6♠ should be treated as one of 52 equally plausible related hypotheses 
whereby the magician forces some other card.10  Accordingly, our single draw provides 
insufficient evidence to boost the credibility of H6♠ above HR.  

Logical Bayesianism thus penalizes complex hypotheses if they do not provide enough 
additional explanatory power relative to simpler rivals, in line with Occam’s razor and Einstein’s 
dictum that things should be as simple as possible, but no simpler.  In quantitative analysis, this 
task is accomplished via Occam factors that are automatically built into Bayesian probability 
(Jaynes 2003:601-07, MacKay 2003:343-356, Gregory 2005:45-50). Appendix A discusses 
Occam factors in more detail and illustrates how the penalty of 1/52 in our card-draw example 
emerges when we formally apply Bayesian analysis.  In qualitative research that heuristically 
follows Bayesian reasoning, there are no universal prescriptions for assessing how ad-hoc a 
hypothesis is.  However, one useful stratagem entails carefully scrutinizing a new hypothesis to 
evaluate how much additional complexity it introduces compared to rivals.  If the hypothesis 
invokes many more causal factors or very specific conjunctions of causal factors, good practice 
would entail penalizing its prior probability relative to the rivals.     

In sum, within logical Bayesianism, likelihood ratios help guard against confirmation bias, 
while priors help guard against ad-hoc hypothesizing.  These safeguards are absent within 
frequentism, where hypothesis testing focuses on the probability of the data only under the null 
hypothesis, rather than relative likelihoods under rival hypotheses, and where the concept of 
probability applies only to data obtained through a stochastic sampling procedure, not to 
hypotheses.  Frequentist inference therefore requires pre-specifying sampling and analysis 
procedures to avoid confirmation bias, and strictly separating data used in theory-building from 
data used for theory-testing to prevent ad-hoc hypothesizing, whereas such standards are 
unnecessary for Bayesian inference.   
 

4. Iterative Research in Practice 
We have argued that within logical Bayesianism, there is no need for firewalls between 

theory-building and theory-testing, and no need to rely exclusively on “new evidence” when 
testing hypotheses.  All we must do is carefully assign prior probabilities in light of our 
background information, and carefully assess likelihood ratios for all relevant evidence under our 
rival hypotheses.  This section illustrates how these points apply to qualitative research by 
extending the Peruvian state-building example introduced in §3.2.  We emphasize that we make 
no claims about how Kurtz’s research process unfolded.  Instead, we draw on hypotheses and 
evidence from his published work to show how an iterative dialog with the data can give rise to 
inferences that are as valid as in a purely deductive approach, where all hypotheses were devised 
prior to data collection.  

Suppose that after comparing the resource-curse and warfare hypotheses in light of E1 
(military threats, mineral abundance, and weak state), we learn the following additional 
information:  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
10 We might additionally discount the magician hypothesis considering the chances of encountering a magician at 
the party. 
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E2=Throughout the 1880s, agricultural production in Peru relied on an enormous 
semiservile labor force.  When Chile invaded, Peruvian elites were far more concerned 
that peasants remain under control than they were with contributing to national 
defense. The mayor of Lima openly hoped for a prompt Chilean occupation for fear 
that subalterns might rebel. The agrarian upper class not only refused to support 
General Cáceres’ efforts to fight back, but actively collaborated with the Chilean 
occupiers because of Cáceres’ reliance on armed peasant guerillas. (Kurtz 2009:496)  

This evidence might inspire a new hypothesis:      
HLRA=Labor-repressive agriculture is the central factor hindering institutional 

development.  Elites resist taxation and efforts to centralize authority, especially 
control over coercive institutions, because they anticipate that national leaders may be 
unable or unwilling to keep their rebellion-prone local labor forces under control. 
(Kurtz 2009:485) 

To assess which hypothesis better explains the evidence acquired thus far, we must go back and 
reassign prior probabilities across the new hypothesis set: HR, HW, and the inductively-inspired 
HLRA.  We must then assess likelihood ratios for the aggregate evidence E1E2.  

For priors, strictly speaking we should assess the plausibility of each hypothesis taking into 
account all information accumulated in previous state-building literature.  However, 
systematically incorporating all of our background information when assessing priors is 
infeasible in social science.  Given practical limitations, one reasonable approach is to keep equal 
odds on HR vs. HW but give HLRA a moderate penalty relative to each rival, thereby 
acknowledging the novelty of this hypothesis with respect to existing research on state-building 
and anticipating skepticism among readers.  Another reasonable option entails equal odds on all 
three hypotheses, considering that HLRA is grounded in a longstanding research tradition 
originated by Barrington Moore.  As Kurtz (2009:485) documents, while HLRA is not discussed in 
state-building literature, labor-repressive agriculture has been identified as a crucial factor 
affecting other macro-political outcomes including regime type, so a-priori we might expect this 
factor to be salient for state-building as well.  Furthermore, although HLRA was introduced post-
hoc (in light of E2), it is no more or less ad-hoc compared to the rivals—on inspection, none of 
the three hypotheses seems appreciably more complex than the others (Figure 2).  Each identifies 
a single structural cause that operates by shaping the incentives of key actors. 
 

Figure 2 

HR    = Mineral resource abundance is the central factor hindering institutional development.  
Easy money from the mineral sector undermines administrative capacity by 
precluding the need to collect taxes, and public resources are directed toward 
inefficient subsidies and patronage networks that sustain elites in power.    

HW   = Absence of warfare is the central factor hindering institutional development. Threat of 
military annihilation requires states to extract resources from society and develop 
strong administrative capacity in order to build and sustain armies. In the absence of 
external threats, state leaders lack these institution-building incentives.   

HLRA = Labor-repressive agriculture is the central factor hindering institutional development.  
Elites resist taxation and efforts to centralize authority, especially control over 
coercive institutions, because they anticipate that national leaders may be unable or 
unwilling to keep their rebellion-prone local labor forces under control.  
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Turning to the evidence, the easiest way to proceed entails assessing likelihood ratios for 
HLRA vs. HR and for HLRA vs. HW.11  Since the overall likelihood ratio can be decomposed as:  
𝑃 𝐸!𝐸! 𝐻!𝐼
𝑃 𝐸!𝐸! 𝐻!𝐼

=
𝑃 𝐸! 𝐻!𝐼
𝑃 𝐸! 𝐻!𝐼

×
𝑃 𝐸! 𝐸!𝐻!𝐼
𝑃 𝐸! 𝐸!𝐻!𝐼

                                                                                                                                                                                                                                (5)    

 

we first consider E1 and then E2.  
Evidence E1 moderately favors HR over HLRA.  As explained in §3.2, E1 fits quite well with 

the resource-curse hypothesis.  However, E1 is not surprising under HLRA; a weak state with 
mineral resources would still be an easy and attractive target for invasion if labor-repressive 
agriculture were the true cause of state weakness.  Nevertheless, the presence of resource wealth 
in conjunction with state weakness makes E1 more expected under HR.  In contrast, E1 strongly 
favors HLRA over HW.  We have argued that this evidence is unsurprising under HLRA, but as 
previously discussed, it is highly unlikely under HW.     

E2 very strongly favors HLRA over each alternative.  Neither HW nor HR makes predictions 
about the nature of agricultural labor, but under either of these hypotheses, the behavior of 
Peruvian elites described in E2 would be highly surprising—we would instead expect them to 
resist the Chilean incursion (however ineffectively, given state weakness).  In contrast, E2 fits 
quite well with HLRA in showing that concern over maintaining subjugation of the labor force 
trumped concern with national sovereignty and statehood.  Of course, we know E2 fits well with 
HLRA since the former inspired the latter; however, the critical inferential point is that E2 is much 
more plausible under HLRA relative to the alternatives.  Accordingly, this evidence very strongly 
increases the odds in favor of HLRA vs. each rival.  

Overall, the likelihood ratio (5) strongly favors HLRA over the rivals.  E2 overwhelms the 
moderate support that E1 provides for HR.  And all of the evidence weighs strongly against HW.  
Accordingly, HLRA emerges as the best explanation given the evidence acquired thus far.  If we 
begin with a moderate penalty on HLRA, the posterior still favors that hypothesis, although the 
higher the prior penalty, the more decisive the overall evidence needed to boost the plausibility 
of HLRA above its competitors.  

In essence, we have now “tested” an inductively-inspired hypothesis with “old evidence.”   
What matters is not when HLRA came to mind or which evidence was known before vs. after that 
moment of inspiration, but simply which hypothesis is most plausible given our background 
information and all of the evidence.  Imagine that a colleague is familiar with all three 
hypotheses from the outset but has not seen E1E2.  This colleague would follow a logically 
identical inferential process in evaluating which hypothesis provides the best explanation for the 
Peruvian case: assessing the likelihood of E1E2 under these rival hypotheses.  It would be 
irrational for two researchers with the same knowledge to reach different conclusions merely 
because of when they learned the evidence.   

To further emphasize the irrelevance of relative timing, we do not know from reading 
Kurtz (2009) whether he invented HLRA before or after finding E2, but that chronological 
information would not make E2 any more or less cogent. Our goal is not to reproduce the order in 
which the neurons fired inside the author’s brain; our goal is to independently assess which 
hypothesis is most plausible in light of the evidence presented.  

Of course “new evidence” is often valuable for improving inferences by providing 
additional weight of evidence.  In this example, readers probably would not be satisfied if 
Kurtz’s analysis ended with E2.  However, the goal of obtaining new evidence is not to supplant 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
11 P(E1E2|HRI)/P(E1E2|HWI) is determined by the other two ratios. 
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existing evidence that inspired the hypothesis, but rather to supplement that evidence and ideally 
strengthen our inference.  Information is never intentionally disregarded in logical Bayesianism; 
any new, differentiated stage of research following the inductive inspiration of a hypothesis must 
take all previously-obtained evidence into account through the prior probability on that 
hypothesis.  In our example, E2, which inspired HLRA, contributes to the strong posterior odds in 
favor of HLRA, which would in turn become the “prior odds” when analyzing additional 
evidence.12    
 

5. Addressing Anticipated Concerns 
We recognize that logical Bayesianism is a mathematical ideal that usually cannot be fully 

realized in practice without approximations.  In qualitative social science, some degree of 
subjectivity must inevitably enter when assigning probabilities.  There is no mechanical 
procedure for objectively translating complex, narrative-based, qualitative information into 
precise probability statements.  We may still commit analytical errors despite conscientious 
efforts to follow Bayesian reasoning.   

Accordingly, this section considers potential concerns with our argument that qualitative 
research need not demarcate theory-building vs. theory-testing.  Our overarching response draws 
on the premise that research is not only a dialog with the data, but also a dialog with a 
community of scholars.  Knowing the trajectory of authors’ thought processes should not matter 
to how readers scrutinize inferences.  If scholars disagree with an author’s conclusions, logical 
Bayesianism provides a clear framework for pinpointing the locus of contention, which may lie 
in different priors and background information, and/or different interpretations of particular 
pieces of evidence.  The Bayesian framework itself, whether applied explicitly or heuristically, 
thereby lays analysis open for all to scrutinize on its own terms.  In contrast, it would be 
misguided to assume that if authors time-stamp hypotheses and evidence, their analysis is sound, 
whereas if such information is not reported, their inferences lack credibility.  Regardless of 
whether temporal details about how the research process unfolded are provided, scholars must 
scrutinize hypotheses and evidence with their own independent brainpower.    

Our discussion below includes guidelines for facilitating scholarly dialog and improving 
inferences within a Bayesian framework, while highlighting shortcomings of prescriptions for 
labeling and/or separating exploratory/inductive vs. confirmatory/deductive research stages.  We 
address anticipated concerns regarding biased priors, biased likelihoods, and scholarly integrity 
in turn. 
 
5.1. Biased priors  
Concerns: 
(a) Given psychological difficulties in “getting something out of our mind,” we may be unable to 
assign priors that are not influenced by what we already know about our data.   
(b) Given vulnerabilities to cognitive biases, we may over-fit inductively-devised hypotheses to 
the evidence without adequately penalizing their priors.   
 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
12 Two further points merit emphasis.  First, Bayesian “test strength” is simply a function of the extent to which the 
evidence fits better with one hypothesis relative to rivals.  Second, the goal in this example is to explain a single 
case.  Whether HLRA better explains Peru than the rivals says nothing about how well this theory holds beyond 
Peru—assessing generalizability requires examining evidence from other cases.   
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Pre-specifying priors is not a sensible solution to these concerns.  We cannot assess a prior 
before devising the hypothesis, and once we formulate the hypothesis, all relevant information—
both background knowledge and evidence Eprev acquired thus far—must inform P(H|EprevI), 
which serves as the “prior” moving forward.  Moreover, whether we evaluate P(H\I) and then the 
likelihood for the total evidence ET=EprevEpost ultimately collected, P(ET|I), or whether we update 
along the way, evaluating P(H|EprevI) and then P(Epost|EprevHI)×P(H\EprevI), the final inference 
must be the same—consistency checks can be conducted to ensure equivalence.  The timing of 
when we assess or record priors is therefore irrelevant.    

To guard against subconsciously-biased priors (concern (a)), best practices should include 
the following.  First and foremost, describe the most salient background information and explain 
why it motivates a particular choice of priors.  If priors are obviously biased in favor of an 
inductively-derived hypothesis, beyond what is justified by the background information 
discussed, readers should notice the discrepancy. For instance, in our state-building example, 
readers might balk if our prior odds strongly favored HLRA over the well-established resource-
curse and warfare hypotheses.  Likewise, if a well-known study or salient literature is 
overlooked, readers will request reconsideration of priors in light of that further background 
information.   

Second, consider conducting the analysis with equal prior odds, which avoids biasing the 
initial assessment in favor of any hypothesis.  This approach shifts the focus to likelihood ratios, 
with the aspiration that even if scholars disagree about priors—which will be almost inevitable 
given that everyone has different background information—we may still concur on the direction 
in which our odds on the hypotheses should shift in light of the evidence.  Third, consider using 
several different priors to assess how sensitive conclusions are to these initial choices along the 
lines of our analysis in §4.      

For qualitative research that follows Bayesian logic heuristically, the first guideline entails 
carefully discussing the strengths and weaknesses of rival explanations based on existing 
literature, which is common practice.  The second guideline entails recognizing that readers may 
initially view a hypothesis with much more skepticism than the author, such that all parties in the 
scholarly dialog should pay close attention to scrutinizing the evidence and the inferential weight 
it provides in favor of the author’s explanation relative to rivals.  Accordingly, authors should be 
conservative with their inferential claims until the weight of evidence becomes strong.   

Regarding concern (b), scholarly dialog can again serve as a corrective to sloppy analysis.  
If an inductive hypothesis manifesting multiple fine-tuned variables or inordinate complexity is 
granted too much initial credence, readers should notice and demand additional evidence to 
overcome an unacknowledged or underestimated Occam penalty (§3.4). 

Beyond the simple advice to treat inductively-devised hypotheses with a healthy measure 
of skepticism, the following suggestions can help curtail ad-hoc hypothesizing: start with 
reasonably simple theories and add complexity incrementally as needed; critically assess whether 
all casual factors in the theory actually improve explanatory leverage; and ask whether the 
explanation might apply more broadly.    

It is important to emphasize that transparency in reporting the temporal sequencing of the 
research process in and of itself is not useful for ascertaining how severe an Occam penalty a 
hypothesis should suffer on its prior.  The critical point is that a hypothesis that is post-hoc—
devised after the evidence—is not necessarily ad-hoc—arbitrary or overly complex.  These are 
distinct concepts.  As argued in §4, HLRA is post-hoc (relative to key evidence E2), but not ad-
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hoc, because it is no more arbitrary or complex than its rivals.  In contrast, the following 
illustrates an ad-hoc hypothesis that is clearly over-tailored to case evidence:   
Had-hoc=The conjunction of three factors hinders institutional development: (1) cultural-linguistic 
affinity between Peruvian and Chilean elites, (2) attempted peasant uprisings within a nine-
month period preceding invasion, and (3) distrust on the part of domestic elites in generals’ 
commitment to upholding the social order and their ability to maintain discipline over soldiers.   
 
5.2. Biased likelihoods  
Concern: We may succumb to confirmation bias in overstating how strongly evidence favors an 
inductively-derived hypothesis.  

Recent suggestions for pre-registration and time-stamping in qualitative research (Bowers 
et al. 2015, Kapiszewski et. al. 2015b, Jacbos 2017) aim to address these concerns, on the 
premise that differentiating exploratory from confirmatory analysis allows us to more credibly 
evaluate inductively-inspired hypotheses.  Importing this prescription into a Bayesian framework 
would entail assigning likelihoods in advance to clues we might encounter before we continue 
gathering data.   

Even in light of human cognitive limitations we find this approach unhelpful. Although a 
scholar’s prospective assessment of likelihoods for “new evidence” might be less prone to 
confirmation bias than retrospective analysis of “old evidence,” confirmation bias could just as 
easily intrude when gathering additional evidence—by subconsciously looking harder for clues 
that favor the working hypothesis and/or overlooking those that do not (§3.4).   

Moreover, we reiterate the impossibility of foreseeing all potential evidentiary observations 
in the complex world of qualitative social science.  It is essential to recognize that anticipating 
course-grained categories of observations is not adequate for specifying likelihoods for any 
actual, concrete evidence that might fit within that class, because specific details of evidence 
obtained can matter immensely to likelihoods under different hypotheses.  To illustrate the 
problem, consider the example Bowers et al. (2015:16-17)13 present in their discussion of pre-
analysis plans for qualitative research: a government has cut taxes, and we wish to assess 
hypothesis HK=The tax cuts were motivated by an interest in Keynesian demand management.  
Bowers et al. delineate evidence E=Records of deliberations among cabinet officials about the 
tax cut show “prominent mention of the logic of Keynesian stimulus,” and they judge the 
probability of finding such evidence if HK is true to be very high.  Although the suggestion that 
we should consult meeting records and look for discussion of Keynesian ideas is sound advice, E 
as stated above is too vague to assign a likelihood in advance.  Here are two different pieces of 
evidence we might encounter in the records: 

E' =The Finance Minister invokes Keynesian demand stimulus when explaining the 
proposed tax cut and its rationale to other cabinet members present in the meeting.  
E'' =One of the cabinet members in the meeting notes that the tax cut is consistent with 
Keynesian demand stimulus, whereafter discussion is interrupted by laughter and 
derisive jokes about Keynesian economics.   

Suppose further that the amount of time and attention devoted to these mentions of Keynesian 
stimulus are similar for E' and E'', such that both qualify as instances of E as articulated above, 
even though they carry very different import.  Whereas the likelihood of E' might well be high if 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
13 See also Jacobs (2017:29). 
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HK is true, the likelihood of E'' certainly is not high—E'' would be extremely surprising in a 
world where the Keynesian-stimulus hypothesis is correct.   

Bowers et al. (2015:16-17) recognize this “problem of precision,” noting: “of course [E as 
defined above] still leaves some things open.  Just how prominent do mentions of 
Keynesian logic have to be...?  How many actors have to mention it?  What forms of words 
will count as the use of Keynesian logic?”  In our view, however, they underestimate the 
problem.  As our example demonstrates, the issue is not just how many mentions or how many 
actors or what terms we associate with Keynesianism, but an endless array of other possibilities 
and nuances that depend on the context and manner in which Keynesian logic is discussed. 
However much additional detail we aim to specify before gathering data, we can always 
invent—and the real world may well produce—another twist or tweak that matters nontrivially.  
And despite efforts to anticipate what might surprise us ahead of time, science advances most 
when evidence surprises us in unforeseen ways.    

Pre-registration advocates respond that despite the problem of precision, a pre-analysis plan 
is still useful because it “allows the reader to compare the researcher’s interpretation of 
unexpected observations to the pre-announced tests and to arrive at her own judgment about the 
extent to [which] the interpretation of the evidence is consistent with the analysis plan’s broad 
logic,” (Jacobs 2017:29).  Yet this assertion implies that scrutinizing findings depends on 
knowing what was in the scholar’s head at given time.  As we have argued, such psychological 
and chronological information is logically irrelevant for inference.   

Jaynes (2003:421) reinforces these key points: “The orthodox line of thought [holds] 
that before seeing the data one will plan in advance for every possible contingency and list the 
decision to be made after getting every conceivable data set. The problem...is that the number of 
such data sets is usually astronomical; no worker has the computing facilities needed… We take 
exactly the opposite view: it is only by delaying a decision until we know the actual data that it is 
possible to deal with complex problems at all. The defensible inferences are the post-data 
inferences.”  What matters is not what scholars anticipated they might find, but rather what they 
did find.  Likewise, we care about how sound the inferences are in light of the arguments and 
evidence presented, not in comparison to every twist and turn of analysis before the author 
arrived at the final conclusions, or what the author would have thought had the data turned out 
differently.   

Returning to the core concern of mitigating bias when assessing likelihoods, first, recall 
that inference always requires assessing likelihood ratios, which keeps us from forgetting to ask 
how well the evidence fits with rival explanations.  Second, we reiterate our central point 
regarding scholarly scrutiny.  If despite efforts to follow logical Bayesian prescriptions, a scholar 
nevertheless over-estimates how much the likelihood ratio favors an inductively-inspired 
hypothesis, readers can independently weigh the evidence and critically assess the author’s 
judgments.  Subsequent debate may encourage the author to bring more background information 
to light that was previously used implicitly, or acknowledge that the evidence is not as strong as 
previously maintained.  In our state-building example, a reader might contest our assessment that 
E1E2 very strongly favors HLRA over HR, perhaps suggesting that this evidence only moderately 
favors the inductively-inspired hypothesis.  Open discussion would then result in greater 
consensus or at least greater clarity on why scholars interpret the evidence differently.   
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5.3. Scholarly integrity 
Concern: We need mechanisms to discourage scholars from deliberately choosing procedures 
after the fact to get the results they want, or manipulating evidence to strengthen results.    

The first malpractice—post-hoc choice of analytical procedures—is a bigger concern for 
frequentist inferential techniques, which require predefined stochastic data-generation 
models.  Within a Bayesian framework for case-study research, we must make judgments about 
which hypotheses to consider, where and how to acquire evidence, and how to interpret that 
evidence.  However, the underlying inferential procedure remains the same: apply probabilistic 
reasoning to update beliefs regarding the plausibility of rival hypotheses in light of relevant 
evidence.  The analysis always involves assessing priors, assessing likelihoods, and updating 
probabilities in accord with Bayes’ rule.  Unlike frequentist statistical analysis, there is no need 
to choose among sampling procedures, stopping rules, estimators, tests statistics, or significance 
levels. 

The second type of malpractice can certainly occur in qualitative research.  Consider 
cherry-picking, where scholars “selectively pluck supportive quotations, statements, and other 
data out of context to maintain the fiction of complete corroboration,” (Yom 2015:22).  
However, time-stamping does little to deter such abuses.  Any scholar intent on exaggerating 
results or willing to commit fraud can find ways to do so regardless.  Ansell and Samuels 
(2016:1810) make similar observations regarding the related issue of results-blind review; they 
note that it is always possible to “sweep dirt an author wants no one to see under a different 
corner of the publishing carpet.”  As a device for signaling integrity, mechanisms like pre-
registration or time-stamping risk imposing a substantial burden of time and effort on honest 
scholars without preventing dishonest scholars from sending the same credibility signals. 

The only viable strategy in our view involves disciplinary norms.  First, the profession 
must instill a commitment to truth-seeking and scientific integrity.  As Van Evera (1997:46) 
observed long before APSA’s transparency initiative, “Infusing social science professionals with 
high standards of honesty is the best solution.”  Second, adjusting publication norms regarding 
requisite levels of confidence in findings would mitigate incentives for falsely bolstering 
results.14  For qualitative research, embracing Bennett and Checkel’s (2015:30) dictum that 
“conclusive process tracing is good, but not all good process tracing is conclusive” would be a 
major step in the right direction for reducing temptations to overstate the case in favor of a given 
hypothesis.  An associated best practice could entail explicitly addressing the pieces of evidence 
that on their own run most counter to the overall inference; transparency of this type could both 
encourage critical thinking and signal integrity in a more meaningful way.             
 

6. Conclusion   

We share the transparency movement’s goals of improving the reliability and quality of 
inference.  We recognize that some research programs might benefit from pre-registration and 
time-stamping, or related practices such as data-blinding, and theories should certainly be subject 
to ongoing re-evaluation based on additional evidence. 

  However, we are skeptical of imposing constraints that often clash with the 
underlying logic and nonlinear practice of scientific reasoning.  We have argued that standards 
such as pre-registration and time-stamping are neither necessary for nor suited to iterative 
qualitative case research that follows by the principles of Bayesian inference.  From a logical 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
14 Avoiding publication bias towards unexpected or counterintuitive findings is also advisable.  
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Bayesian perspective, such constraints are based on false dichotomies between theory building 
vs. theory testing and old vs. new evidence.  Science invariably involves a dialogue with the 
data.  Progress is nonlinear, iterative, serendipitous, and provisional.  Scholars must interrogate 
data from different angles, re-think assumptions, and consider new hypotheses.   

 We have argued that within logical Bayesianism, devising hypotheses, assigning prior 
probabilities, and deriving posterior probabilities on hypotheses in light of our evidence and 
salient background information are all logically distinct steps, where temporal ordering is 
irrelevant.  Testing hypotheses with evidence already used to develop the theory simply requires 
following the rules of probability and striving to assign degrees of belief that are based on the 
information we possess, independently of subjective hopes, intensions, and desires—exactly the 
same critical thinking necessary for assessing new evidence.  Once analysis is completed, what 
matters is whether experts agree that priors are justified and likelihood ratios well reasoned.  
Details about what was know when and how research evolved over the course of fieldwork and 
analysis are logically irrelevant.  

Applying Bayesian reasoning in qualitative research remains a methodological frontier.  As 
this program advances, we envision training in logical Bayesianism as a good way to leverage 
intuition and improve inference, without needing to formally apply the full mathematical 
apparatus in qualitative research.  Although some subjectivity and approximation will inevitably 
intrude in real-world applications, logical Bayesianism in itself is a prescription for systematic, 
rational reasoning.  This inferential framework counteracts cognitive biases—confirmation bias 
when collecting or assessing new evidence and ad hoc hypothesizing when analyzing old 
evidence—and helps scholars scrutinize analysis for signs of sloppy or motivated reasoning, 
rather than making presumptions based on accidents of timing.    
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Appendix A.  Ad-Hoc Hypotheses and Occam Factors    
 

Section 3.4 introduced the logical Bayesian concept of Occam factors, which penalize 
hypotheses that over-fit the data.  This appendix discusses Occam factors in more detail and 
provides two examples to show how they can arise in qualitative research.   

To appreciate the importance of Occam factors, it is worth stressing that over-fitting can be 
a major problem within a frequentist framework that does not allow prior probabilities on 
hypotheses or fixed parameters. When working with quantitative datasets, analytical models can 
be made arbitrarily complex with a multitude of adjustable parameters that end up fitting not just 
the signal of interest, but the noise as well.  Detecting over-fitting can be particularly challenging 
in orthodox statistics, because adding extra parameters can always improve the likelihood of the 
data under the model.   

Within logical Bayesianism, however, an ad-hoc hypothesis that is too closely tailored to 
fit the arbitrary details of the data incurs a low prior probability via Occam factors that arise 
automatically from correctly applying probability theory.  These Occam factors keep us from 
favoring an overly complex hypothesis compared to a simpler hypothesis that adequately 
explains the data.  

Recall that generally speaking, an ad-hoc hypothesis is properly regarded as one member 
of a family of hypotheses characterized by multiple parameters that take on different, but equally 
arbitrary values.  To restate this point in slightly different terms, an ad-hoc hypothesis emerges 
from a model with multiple parameters that a priori could have taken on a large range of 
different values.  As a model becomes more complex, its prior probability becomes spread out 
over a larger parameter space, and the posterior odds are reduced to the extent that this parameter 
space must be fine-tuned to fit the observed data.  Similarly, whenever we include another 
parameter in the model and find that the range of values it must assume to account for the data is 
much narrower than the prior range of values deemed feasible given the background information 
alone, the model receives an Occam penalty.  

Whether the posterior odds favor a more complex model relative to a simpler model 
depends on whether the complex model fits the data sufficiently better to overcome its Occam 
penalty.  Compared to complex models, simpler models are generally ruled out more easily, 
because they are less able to explain a diversity of possible outcomes. On the other hand, Bayes’ 
theorem rewards the simpler model for sticking its neck out and making less flexible predictions 
if those predictions come true. Bayesian analysis therefore helps find the signal without over-
fitting the noise. 

To see how Occam factors emerge from the mathematics of Bayesian probability, we 
reconsider the card-draw example presented in Section 3.4, where we draw the six of spades 
from a deck held by a stranger at a party.  We are interested in comparing two hypotheses: HR = 
The card was arbitrarily selected from a randomly shuffled deck, and an ad-hoc rival, H6♠ = The 
stranger is a professional magician with a trick deck that forces the six of spades.  The first step 
is to recognize that H6♠ is one member of a family of 52 equally plausible related hypotheses, HM 
= HM c1 or HM c2 or ... or HM c52 , where HM ck = the magic trick forces card ck.  In other words, 
we must compare HR against HM, a more complex model with a parameter ck that can be adjusted 
to fit the data.  We wish to calculate the posterior odds: 
 
𝑃 𝐻! 𝐸  𝐼
𝑃 𝐻! 𝐸  𝐼

=
𝑃 𝐻!   𝐼)
𝑃 𝐻!|  𝐼

×
𝑃 𝐸 𝐻!  𝐼
𝑃 𝐸 𝐻!   𝐼

                                                                                                                                                                                                                                                                    (𝐴1)  
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Expanding the numerator of the likelihood ratio (the right-most term in A1), we have: 
 
𝑃 𝐸 𝐻!  𝐼
𝑃 𝐸 𝐻!   𝐼

=     
∑𝑃 𝑐! 𝐻!  𝐼   𝑃 𝐸 𝐻!  𝑐!  𝐼   
                                            𝑃 𝐸 𝐻!   𝐼

,                                                                                                                                                                                                                                  (𝐴2)  

  
where we have used the law of total probability to introduce a sum over all 52 possible values of 
the card parameter c.  In essence, we are averaging the likelihoods under each sub-hypothesis in 
the magic-trick family, weighted by the prior probability that the card parameter takes a 
particular value.  When we plug in the 6 of spades for the evidence E, the sum in the numerator 
picks out that single value for the parameter c, because the likelihood of E=6♠ is zero for every 
sub-hypothesis except for that which forces the 6 of spades:   
 
𝑃 𝐸 𝐻!  𝐼
𝑃 𝐸 𝐻!   𝐼

=     
( 152×0 +

1
52×0 +⋯+ 𝟏

𝟓𝟐×𝟏 +
1
52×0 +⋯ )  

                                  ( 𝟏𝟓𝟐)  
.                                                                                                                                                      (𝐴3)  

 
In the denominator above, we have used the fact that the likelihood of E=6♠ under the random 
draw hypothesis is 1/52.  Substituting (A3) into (A1), we can now rewrite the posterior odds ratio 
as the product of three factors: 
 
𝑃 𝐻! 𝐸  𝐼
𝑃 𝐻! 𝐸  𝐼

=
𝑃 𝐻!   𝐼)
𝑃 𝐻!|  𝐼

×
   1
52   

  1  
  ×   

  1  

  ( 152)  
.                                                                                                                                                                                                                                  (𝐴4)  

 
These three factors on the right-hand side of (A1) are the model-level prior, the Occam penalty—
a factor of 1/52 in the numerator, and the “fitted likelihood”—a factor of 1/52 in the 
denominator.  The model-level prior remains to be assessed, using any salient background 
information about the chances that the stranger is a skilled magician as opposed to an ordinary 
partygoer with a randomly shuffled deck.  The Occam penalty arises from the prior probability 
that a magic trick would favor the six of spades.  The fitted likelihood, P(E|HM 6♠ I) ⁄ P(E|HR I), 
assesses how surprising or expected our evidence is under H6♠ relative to HR once we have 
chosen the six of spades as the parameter value for the magician model.  
        In essence, the more complex model HM receives an Occam penalty when the data obtained 
rules out all but one of the 52 parameter values that were plausible a priori.  This Occam factor 
keeps us from favoring the ad-hoc six of spades hypothesis, which on its own makes the card we 
chose much more likely than the random-draw hypothesis.  Note that in general, the Occam 
factor will not exactly cancel the fitted likelihood; that effect is a special feature of this example.  
It is also important to emphasize that the posterior odds could end up favoring the more complex 
model, if the fitted likelihood is good enough to overcome the Occam factor.  Accordingly, 
logical Bayesianism does not always favor simplicity—it balances simplicity against explanatory 
power.   

A second example illustrates how Occam factors can emerge in explicit Bayesian process 
tracing.15  Suppose we have two plausible explanations for why the government of Gonduria, a 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
15 For the sake of illustration, we are explicitly identifying and evaluating an Occam penalty, but Occam factors 
arise automatically if Bayesian analysis is correctly employed.  In actual practice, we need not think about Occam 
factors as a separate step in Bayesian analysis. 
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developing country on the Pandor continent, expanded social programs to reach a larger 
proportion of the poor:  

HWB =Expanding social programs was a condition for a World Bank loan;  
HR =The government designed these measures to improve its approval ratings after the 

latter dropped below a critical threshold, rc.   
HR denotes a family of hypotheses, where rc could take on many different values.  A priori, it 
would be reasonable to assume that the threshold rating rc falls between 25% and 50%.  
Regarding the upper limit, we reason that democratic governments tend to become concerned 
once approval ratings drop below 50%.  We set the lower limit drawing on background 
information that approval ratings in Pandorian democracies generally have not dropped below 
25% during periods of normal politics.  We wish to calculate the posterior odds ratio (equation 3) 
for the two hypotheses in light of evidence E0=The government’s approval rating at the time, r*, 
was 44%.  

We begin by evaluating the likelihood of the evidence under HR:  

P(E0|HR I)=∑P(rc|HR I)×P(E0|rc HR I)        (7) 
where as in the previous example, we have used the law of total probability to introduce a sum 
over all possible values of the critical threshold (recall that each value of rc defines a specific 
hypothesis in the HR family); for simplicity we sum over integers instead of integrating over a 
continuum.16  When rc >50% or <25%, we have P(rc|HR I)=0.  We take the prior likelihood of the 
threshold parameter to be uniform over the range of 25%–50%, such that P(rc|HR I)=1/25.  
Denoting evidence E0 as r*=44%, we have:  
P(E0|HR I)=(1/25)∑P(r*=44%|25%≤rc≤50% HR I)        (8) 

The summand vanishes unless rc ≥44%; otherwise the threshold hypothesis would be 
contradicted.  For rc ≥44%, we take all values of P(r*=44%|rc HR I) to be equal, assuming that 
approval ratings at the time the government expanded social spending are independent of the 
critical threshold.17  We can then replace the sum in equation (8) with a factor of 7: 

P(E0|HR I)=(7/25)P(r*=44%|44%≤rc≤50% HR I)        (9) 
More generally, for evidence E that includes r*=44% along with other salient observations, we 
have: 
P(E|HR I)=(7/25)×P(E|44%≤ rc≤50% HR I)          (10) 

We can now calculate the posterior odds ratio for HR vs. HWB:   
 P(HR|E I )  =  (7/25)×P(HR|I)×P(E|44%≤rc≤50% HR I)          (11) 
P(HWB|E I )                 P(HWB|I)×P(E|HWB I)   
 

We find that HR is penalized relative to HWB by an Occam factor of 7/25, regardless of how 
plausible we find the family of hypotheses HR relative to the World Bank hypothesis.  This 
moderate penalty arises because the data r*=44% rules out a moderate portion of the parameter 
space judged feasible given the background information.  Had the value of r* been lower, the 
Occam penalty would have been less significant.  If the government’s approval ratings at the 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
16 We would not expect arbitrarily close values to be observationally distinguishable so this approximation seems 
reasonable.  
17 This assumption is an oversimplification—there could be many dependencies.   
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time fell below 25%, this evidence would be consistent with any value of the threshold between 
25–50%, and HR would not incur an Occam penalty relative to HWB.    
 
 


