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Abstract
Bayesianprobabilityholds thepotential to serveasan importantbridgebetweenqualitativeandquantitative
methodology. YetwhereasBayesian statistical techniques havebeen successfully elaborated for quantitative
research, applyingBayesianprobability toqualitative research remainsanopen frontier. Thispaperadvances
the burgeoning literature on Bayesian process tracing by drawing on expositions of Bayesian “probability
as extended logic” from the physical sciences, where probabilities represent rational degrees of belief
in propositions given the inevitably limited information we possess. We provide step-by-step guidelines
for explicit Bayesian process tracing, calling attention to technical points that have been overlooked or
inadequately addressed, and we illustrate how to apply this approach with the first systematic application
to a case study that draws on multiple pieces of detailed evidence. While we caution that e�orts to
explicitly apply Bayesian learning in qualitative social science will inevitably run up against the di�iculty
that probabilities cannot be unambiguously specified, we nevertheless envision important roles for explicit
Bayesiananalysis inpinpointing the locusof contentionwhenscholarsdisagreeon inferences, and in training
intuition to follow Bayesian probability more systematically.

� Introduction
A growing movement within political science has identified Bayesianism as the methodological
foundation of process tracing, which entails making causal inferences about a single case by
assessing alternative explanations in light of evidence uncovered.� Compared to frequentism,
Bayesianism o�ers several advantages that are especially important for qualitative case research.
Bayesian probability can handle data that are not generated from a stochastic process (e.g.,
information from expert informants and archival sources), it can be applied to explain unique
events without reference to a population, and it mandates an iterative “dialogue with the data,”�

which mirrors how process tracing is usually conducted.
As part of an initiative to improve analytical transparency and establish process tracing as a

rigorous method, the literature has moved from informal analogies to Bayesianism (McKeown
����; Bennett ����; Beach and Pedersen ����) toward e�orts to explicitly apply Bayesian analysis
in qualitative research (Rohlfing ����; Bennett ����; Humphreys and Jacobs ����). We view this
turn to Bayesianism as a watershed that provides solid grounding for in-depth, small-N case
research. However, whereas Bayesian statistical techniques have been successfully elaborated
for large-N quantitative research (e.g. Iversen ����; Gill ����; Jackman ����; Gelman et al.
����), applying Bayesian probability in qualitative case research remains a frontier that has not

Authors’ note: The authors thank Andrew Bennett, David Collier, Macartan Humphreys, Alan Jacobs, and James Mahoney,
as well as four anonymous reviewers and Editor Jonathan Katz, for valuable detailed comments on previous versions of
this paper. We are also grateful to Devin Caughey, Gustavo Flores-Macías, Peter Kingstone, Richard Nielsen, TomPepinsky,
Kenneth Roberts, Andrew Schrank, Ken Shadlen, and participants at the ���� and ���� APSA Annual Meetings, LSE’s ID
and CP/CPE seminars, MIT’s Political Methodology Research Series, and the ���� Southwest Mixed-Methods Research
Workshop. We dedicate this paper to the memory of Kenneth Fairfield.

� Bayesianism also underpins causal analysis in qualitative research much more broadly, including assessing higher-level
theories in light of multiple cases.

� Astrophysicist Stephen Gull, quoted in Sivia (����).
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been definitively addressed. To date, scholars have examined only a few illustrative pieces of
evidence (Rohlfing ����; Bennett ����) and/or include only highly simplified process-tracing clues
(Humphreys and Jacobs ����). Moreover, a number of technical points have been overlooked or
inadequately addressed within the literature that is innovating in this terrain.
We aim to advance e�orts to apply Bayesian reasoning in process tracing by drawing on

expositions of Bayesian “probability as extended logic” that originated in the natural sciences,
dating back to Bernoulli (����–����) and Laplace (����–����). Modern physicists (Cox ����; Jaynes
����) have demonstratedmathematically that Bayesian probability theory provides the uniquely
consistent extension of deductive logic, where we know whether any given proposition is true or
false, to situationswhere information is incomplete, uncertainty reigns, andhypotheses can rarely
be definitively proven or disproven. This “logical” Bayesian notion of probability—the rational
degree of belief that we should hold in a hypothesis or some other proposition in light of the
information we possess—in principle provides a unified framework for inference.
We begin by situating this paper’s contributions within the burgeoning literature on Bayesian

process tracing (Section �). Section � provides a step-by-step exposition of how to explicitly apply
Bayes’ rule to draw inferences in process-tracing research. We emphasize several conceptual
and technical points that diverge from previous treatments, including comparing a hypothesis
H against clearly delineated rivals, rather than its unspecified logical negation ⇠H , and using a
logarithmic scale instead of a linear scale to assign probabilities, with an analogy to sound, which
minimizes arbitrariness and facilitatesmeaningful assessments of uncertainty. Section � provides
illustrations from our systematic application of explicit Bayesian analysis to a published case
study that draws on multiple pieces of evidence; Appendix A elaborates this case application in
detail.
Section � concludes by assessing the potential for explicit Bayesian analysis to improve

causal inference and analytic transparency in qualitative research, an important and timely issue
given ongoing debate within political science on how best to promote research transparency
(www.dartstatement.org, Lupia and Elman ����; Büthe and Jacobs ����, www.qualtd.net).
We envision important roles for explicit Bayesian analysis in communicating judgments and
pinpointing the locus of contention when scholars disagree on inferences, as well as training
intuition to make more systematic and logically rigorous conclusions. However, we caution that
assigning numerical values to probabilities in qualitative research involves a substantial dose of
arbitrariness that can limit the utility of explicitly employing Bayesian analysis when assessing
complex evidence and nuanced causal models. These caveats do not undermine the importance
of Bayesian probability as the aspirational ideal of scientific inference and the methodological
foundation for process tracing. Understanding the technical details of Bayesian probability that
we elaborate can help discipline our reasoning and elucidate best practices for process tracing,
whether formal or narrative-based.
Beyond providing rigorous analytical tools and insights for process-tracing practitioners, this

paper aims to foster greater understanding of the inferential logic that underlies qualitative case
research among a broader political science audience. All research, from large-N econometrics
to historical analysis, draws on insights from qualitative information, and we believe that
Bayesian probability can serve as an important bridge between qualitative and quantitative
methodology.

� Mapping the Intellectual Terrain
Treatments of Bayesianism in political science draw their foundations on what we call the
“psychological” school, which underlies most Bayesian epistemology in philosophy of science
and Bayesian statistics textbooks (e.g., Savage ����; Howson and Urbach ����). In contrast, we
advocate “logical” Bayesianism, as articulated in the physical sciences, as the methodological

Tasha Fairfield and Andrew E. Charman ` Explicit Bayesian Analysis for Process Tracing: Guidelines,
Opportunities, and Caveats ���
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foundation for process tracing and scientific inference more broadly. Whereas psychological
Bayesianism treats probabilities as a matter of informed opinion, logical Bayesianism seeks to
represent the rational degree of belief that we should hold in propositions given the information
we possess, independent of whims, hopes, or personal predilections. A probability P (A `B )
represents thedegreeof belief that is rational tohold inpropositionA if nothingbutB is presumed
known.
A central tenet of logical Bayesianism is that probabilities should encode knowledge in a

unique, “consistent” manner. Incorporating information in di�erent but logically equivalent
ways (e.g. learning the same pieces of information in a di�erent order) must produce identical
probabilities, and rational individuals who possess the same information must assign the same
probabilities. Cox (����) and Jaynes (����) demonstrated that if we demand consistency and
measure degrees of belief with real numbers between zero and one, then we must adopt the
standard sum and product rules for manipulating and updating probabilities as the uniquemode
of reasoning in the face of uncertainty. Bayes’ theorem and all other mathematical operations in
Bayesian analysis follow directly from these basic rules.
Logical Bayesianism is prescriptive, in that it aspires to elaborate procedures that a rational

individual should follow when reasoning with limited information. In practice, simplifications
and approximations are usually required. Even in the natural sciences, the full calculations may
be too di�icult to complete or even set up, and prior knowledge cannot always be translated
unambiguously into prior probabilities. In social science and especially in qualitative research, we
must accept some degree of subjectivity as inevitable. But we can nevertheless train our thinking
to better approximate logical Bayesianism; this paper aims to further that goal.
Moving from methodological foundations to practice, pioneering research on process tracing

has not yet resolved the question of how to operationalize Bayesian reasoning for in-depth
case analysis that evaluates complex hypotheses and large amounts of nuanced qualitative
information. We build on Bennett (����) by providing a technical exposition grounded in
logical Bayesianism. We expound key principles including conditioning likelihoods on previously
incorporated evidence that are noted but not fully explicated or applied in previous treatments,
andwestress thenecessityof comparingwell-specified rival hypotheses. Abell (����) shares some
similarities with our approach but focuses on inferring the existence of single causal “links” in a
narrative anddoes not recognize the importance of assessingwell-posed alternative explanations
rather than asking whether a given causal mechanism is present or absent.
Turning to the multimethods literature, Humphreys and Jacobs (����) break new ground with

their Bayesian model (BIQQ) for combining correlational data with simple process-tracing clues.
Their work points to the importance of Bayesian probability as a unified framework of inference.
However, if our goal is applying Bayesian analysis to evidence-intensive process tracing, the
BIQQmodel ismore complicated than needed. Drawing onmedical testing analogies, Humphreys
and Jacobs classify cases into types (adverse, beneficial, chronic, destined) according to the
potential outcome a treatment would elicit. Because these types are unobservable and carry
no information about causal mechanisms, we regard them as nuisance parameters. This setup
becomes cumbersome if we are searching for the best explanation for a given case, rather than
assessing average causal e�ects and other population-level parameters from a sample. Instead
of conditioning on the case’s hidden type, we advocate directly evaluating the likelihood of the
evidence conditional on each hypothesis we wish to compare.
A common feature of both the Bayesian process-tracing literature and the Bayesian

multimethods literature is the central role they retain for Van Evera’s (����) process-tracing
tests (Bennett ����, ����; Collier ����; Mahoney ����; Humphreys and Jacobs ����). We view
classificationof tests as unnecessarywithin aBayesian framework, since evidentiary confirmation
is always a matter of degree, not type, and inference is always governed by the logic of Bayes’

Tasha Fairfield and Andrew E. Charman ` Explicit Bayesian Analysis for Process Tracing: Guidelines,
Opportunities, and Caveats ���



�%

��
��

��
��

� 
��

��
""
�!

���
%
%
%
��
��

� 
��

��
��

 �
��

� 
��

��
��

��
��

��
��

��
��

���
��

��
�

��
!�
��
��

��
��

�	
�


��
��

��

�

�"
��

��
�	

��
��

�!
#�

��
�"

�"�
�"�

��
��

�
� 

��
��

��
� 

��
"�

 �
!�
��

�#
!�

���
$�

���
��

��
�"

��
""
�!

���
%
%
%
��
��

� 
��

��
��

 �
��

� 
��

"�
 �

!�
��

""
�!

���
��

���
 �

��
��

��
�


��
��

��
��


�
�	



rule. In addition, although much of Van Evera’s reasoning is intuitively Bayesian, the notion of
process-tracing tests remains close in spirit to frequentist statistical theory, with its tradition
of subjecting hypotheses to a sequence of discrete, named tests that can be either passed or
failed. Instead, we again advocate directly evaluating likelihoods under alternative hypotheses,
as explained in the following section.

� Operationalizing Bayesian Analysis
Explicit Bayesian process tracing involves three key steps: (Section �.�) specifying hypotheses
Hi and assigning their prior probabilities, P (Hi ` I ), given relevant background information I ,
(Section�.�) identifying theevidence,E , and (Section�.�) assessing likelihoods,P (E `Hi I ), and/or
likelihood ratios,P (E ` Hi I )/P (E ` Hj I ).We can thenobtain the posterior odds onHi vs.Hj in light
of the evidence by applying the relative odds-ratio form of Bayes’ rule:

P (Hi ` EI )
P (Hj ` EI )

=
P (Hi ` I )
P (Hj ` I )

⇥ P (E ` Hi I )
P (E ` Hj I )

. (�)

In Section �.�, we explicate the rationale for using a logarithmic scale when assigning numerical
values to probabilities; Section �.� illustrates how to derive an aggregate inference frommultiple
pieces of evidence. Looking forward, we stress that evaluating what Bayesian analysis can do
for process tracing as well as the challenges and limitations requires an understanding of the
technical aspects discussed below.

�.� Hypotheses and priors
The first step in explicit Bayesian process tracing entails specifying the set of hypotheses we
wish to consider, {Hk }. Whereasmost treatments compare a single working hypothesisH against
its logical negation, ⇠H , we advocate identifying one or more concrete rival hypotheses. This
approach is critical in social science, because⇠H generallywill notbeawell-definedproposition—
H could fail to hold in an essentially infinite number of ways. Themore specific the hypothesis is,
the more possibilities are embodied in ⇠H . Directly assessing likelihoods of the form P (E ` ⇠HI )
will be practically impossible if we have not first contemplated what concrete possibilities ⇠H
might actually entail. Suppose HA = Suspect A killed the victim, and we have a clue E = A’s glove
was found at the crime scene. If the only plausible alternative hypothesis is HB = ⇠HA = Suspect
B, A’s bitter ex-spouse, killed the victim and framed A, then P (E ` ⇠HAI ) could be fairly high,
assuming theex-spouse still had someaccess toA’s personal e�ects.However, if theonlyplausible
alternative hypothesis is HC = ⇠HA = Suspect C, a total stranger to A, killed the victim, then
P (E ` ⇠HAI ) might be quite low. If bothHB andHC are considered plausible alternatives, the only
sensible way to proceed is to evaluate the likelihood conditional on each hypothesis separately,
P (E ` Hi I ). We can then calculate posterior odds ratios forHA vs.HB andHA vs.HC , or we can use
Bayes’ rule to obtain the posterior probability on each of the three hypotheses and then calculate
P (⇠HA ` EI ) = 1 � P (HA ` EI ), keeping in mind that our background information includes the
assumption that ⇠HA = HB + HC .
Whenever possible, mutually exclusive hypotheses are preferable. In principal, we can

always take a set of nonrival hypotheses and construct a set of mutually exclusive rivals. For
example, consider two factors that could motivate presidents to violate protectionist policy
mandates: a desire to represent voters’ best interests, and a desire to seek rents associated with
neoliberalism (Stokes ����). If we think both factorsmay contribute,we could delineate five rivals:
H1 = predominantly representation,H2 = both butmostly representation,H3 = both in relatively
equal measure, H4 = both but mostly rent-seeking, H5 = predominantly rent-seeking. Strictly
speaking, ensuring that thesepossibilities aremutually exclusive requires greaterprecision—what
exactlydowemeanby“predominantly” vs. “mostly” vs. “relativelyequal?”This specification issue

Tasha Fairfield and Andrew E. Charman ` Explicit Bayesian Analysis for Process Tracing: Guidelines,
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can pose challenges in explicit Bayesian process tracing.� In practice, it is important to specify
hypotheses as carefully aspossible and to explicitly include theassumption that they aremutually
exclusive and exhaustive as part of the background information. If new evidence suggests that
amore complex hypothesis would provide the best explanation, we should incorporate it in {Hk }

and redo the analysis.
Once we have specified rival hypotheses, we must assign prior probabilities. In principle,

we advocate starting from an initial state of maximal ignorance, I0, and placing equal prior
probabilities on each hypothesis,� in accord with the “principle of indi�erence” or Laplace’s
principle of “insu�icient reason,” (Gregory ����, pp. ��–��; Jaynes ����, pp. ��–��). We then
build up via Bayes’ rule from I0 to the actual prior state of knowledge I . In practice, especially
for social science, systematically incorporating all of our background information is infeasible.
There is simply too much such information to exhaustively list, setting aside the challenges of
formally applyingBayes’ rule to each suchpieceof information. Given this reality, there are several
reasonable options for proceeding. First, we can specify priors that aim to reflect our background
information as best as possible, recognizing that the logical Bayesian approach is aspirational
and some subjectivity will inevitably enter in practice. Second, we can simply use equal priors,
which avoids biasing the initial assessment in favor of any of the hypotheses. Third, we can report
likelihood ratios instead of posterior probabilities and allow readers to supply their own priors.
If the evidence is strong, scholars may converge on a single hypothesis even if they start from
di�erent priors. If the evidence does not strongly favor a single hypothesis, scholars may at least
be able to agree on the direction in which their beliefs should be shi�ed. Another option entails
carrying out the analysis starting from several di�erent prior probability distributions, which
allows us to assess how sensitive our conclusions are to these initial choices.
Leading literature on Bayesian process tracing does not always follow these guidelines.

Consider Bennett’s (����) discussion of Tannenwald’s (����) research on the nonuse of nuclear
weapons in the postwar period. He focuses on Tannenwald’s three principle alternative
hypotheses, which we denote HD = deterrence, HM = lack of military utility, and HT = norms, in
the formofa “nuclear taboo.”Bennett (����, p.���) observes that thesehypotheses “at first glance
seem equally plausible.” In accord with this assessment, which corresponds to the indi�erence
principle, we should use equal prior probabilities of �/� for each hypothesis. However, Bennett
(����, p. ���) instead chooses a prior of �� percent for HT and �� percent for ⇠HT (= HD + HM ).
Rohlfing (����, pp. ��–��) in contrast constructs priors through a process that entails identifying
oneworkinghypothesis, assigning apreliminaryprior probability of��percent, discovering a rival
hypotheses by exploring the literature, and then reducing the prior probability on the working
hypothesis by what appears to be an arbitrary amount. A�er two iterations corresponding to
the discovery of two alternative hypotheses, he ultimately gives the working hypothesis a prior
of �� percent. Instead, best practice mandates that we should state each hypothesis from the
outset, before assigning priors. When comparing three mutually exclusive hypotheses, we could
then assign equal prior probabilities of �/�, or we could choose values that aim to reflect our
background information, with an explanation of why we favor some hypotheses over others.
Reiterating the critical points, before assigning priors, we must elaborate a clearly articulated

set of hypotheses that we assume to be mutually exclusive and exhaustive. We should then
assign a probability to each hypothesis, rather than considering only the working hypothesis
and its logical negation, which implicitly contains all of the rivals. If we discover or devise a new
hypothesis later on, wemust start the problem over and reassign priors.

� Additional complications arise if we wish to model how the two factors contribute in H2�4. They could act independently,
or they could interact—representation might serve as a means to the end of long-term rent-seeking through continuity in
o�ice, if neoliberalism a�ords sustained opportunities for corruption.

� Assuming a discrete set of mutually exclusive hypotheses.
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�.� Evidence
We take a broad, common-sense view of what constitutes evidence in process tracing—any
relevant observation or information (beyond our background knowledge) that bears on the truth
of our hypotheses. Evidence o�en contains information about timing and sequencing, actors’
goals and intentions, and other aspects of causal mechanisms, as obtained from a wide range
of sources including interviews, archives, media records, and secondary literature. Bayesianism
does not face any of the restrictions that limit frequentist statistics to analyzing only replicable
observations or data generated fromsome stochastic process, such as randomsampling. The type
of evidence—regardless of how distinctions are delimited—does not matter for the fundamental
logic of Bayesian analysis, becausewe are allowed to evaluate the probability of any proposition.�

For example, the evidence we evaluate in our empirical example includes not only “within-case”
observations about the causal process driving Chile’s ���� tax reform, but also “cross-case”
evidence from previous tax reform episodes that bears on the hypotheses for explaining the ����
reform (see E1, Section �). We view classification of evidence as superfluous unless it helps us
evaluate likelihoods, because the evidence enters Bayesian calculations only through likelihoods,
regardless of its origin or form.
In a Bayesian framework, attempting to provide a definition of what constitutes “good”

evidence is largely beside the point.� Evidence can be more or less informative, as determined
by the likelihood ratio, but probative value—or “weight of evidence”�—falls on a continuum.
Moreover, what matters is how strongly the total body of evidence discriminates between rival
hypotheses. For example, multiple pieces of information that each yield a very small weight of
evidence together with one piece of information that produces a large weight of evidence may
give an overall inference of essentially the same strength as a single highly probative piece of
information, or two pieces of informationwith intermediate weights of evidence. While wewould
ideally like every piece of evidence we gather to be highly probative, in social science we must
o�en make inferences based on the accumulated weight of evidence from many clues, none of
which is strongly decisive. On the other hand, we sometimes do encounter a highly decisive piece
of evidence, in which case we need not spend time systematically assessing other marginally
probative pieces of evidence, because the latter will not a�ect the overall inference.
Likewise, there is no general prescription for designating what constitutes a distinct “piece”

of evidence. We are free to disaggregate the overall body of evidence E into components E1–
EN as finely or as coarsely as we see fit, with the goal of parsing information at a level that
facilitates reasoning about likelihoods (Section �.�). As a broad rule of thumb, observations that
intuitively appear to favor di�erent hypotheses, or information derived from distinct types of
sources (e.g. a right-wing politician vs. a labor-union leader) are usually best treated as separate
pieces of evidence,whereas similar information arising from similar sources (e.g. two government
informants tell a similar story about a policy process) might usefully be treated as a single piece
of evidence. A second rule of thumb would be to avoid disaggregating the evidence too finely; if
we seek tomake toomany analytical steps explicit, we risk becoming lost inminutia. On the other
hand, if we aggregate too much evidence, it becomes di�icult to assess the overall likelihood of
what is actually a conjunction of many distinct propositions.

�.� Likelihoods and likelihood ratios
Assessing likelihoods and likelihood ratios is the key inferential step in Bayesian process tracing.
The likelihood of the evidence tells us how we should update our prior degree of belief in a
given hypothesis, and, more importantly, likelihood ratios allow us to adjudicate between rival

� The di�iculty of assigning probabilities may nevertheless vary.
� Aside from issues of data validation (e.g. correctly recording sources, avoiding mistranslation).
� Section �.� gives a precise mathematical definition for the weight of evidence.
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hypothesesand thereby identify thebest explanation in lightof theevidence. This sectionexplains
how best to interpret and assess likelihoods, with guidelines for handling information from
sources that may not be reliable and accounting for logical dependence among multiple pieces
of evidence.

�.�.� Inhabit the world of each hypothesis
The likelihood P (E ` Hi I ) is our degree of belief in the truth ofE—apropositionwhich states some
specific empirical evidence—conditional on a given hypothesis and our background information.
Colloquially, we sometimes speak of the probability of “finding or observing the evidence,” since
we are typically interested in updating beliefs in light of evidence that we have actually obtained.
When using this language, we implicitly assume that proposition E includes the fact that the
researcher learned or reliably observed the relevant information.�

The key to assessing P (E `Hi I ) is to remember that we are assuming Hi is correct. Recall
that in the standard notation of conditional probability, everything to the right of the vertical
bar is “conditioning information” that is either reliably known or assumed as a conjecture when
reasoning about the probability of the proposition to the le� of the bar. While we do not actually
know whether Hi is true, we must nevertheless consider the implications of Hi being true. In
Hunter’s (����) illuminating terminology, wemust “mentally inhabit the world of the hypothesis”
and ask how surprising (low probability) or expected (high probability) the evidence would be in
thatworld, or in otherwords, how likelywould it be forE to hold true in thatworld. If the evidence
ismore probable in the “H1 world” relative to the “H2 world,” then that evidence will increase the
odds we place on H1 vs. H2.� That is, we gain confidence in one hypothesis to the extent that it
makes the evidence we see more plausible in comparison to the rival hypothesis.
Assessing likelihoods entails thinking about how consistent the evidence is with the world of

the hypothesis in question and imagining what other kinds of observations or scenarios wemight
expect in that world. However, we cannot hope to enumerate a full list of possible clues that
could have occurred; as Leibniz remarked, “evidence is not to be counted but weighed.” Section �
provides examples that illustrate the reasoning process behind assessing likelihoods.

�.�.� Testimonial evidence: assess the likelihood that “source S stated X”
In the natural sciences, ameasurement apparatus usually needs to be calibrated before gathering
and/or analyzing the data. In the social sciences, we o�en use “testimonial evidence” (La Place)
provided by people (e.g. politicians, journalists, historians) who may misremember, dissemble,
or skew facts to suit their interests. The closest analog of calibration might entail assessing the
reliability of the source; yet in general we cannot do so in any absolute sense, independently
of what exactly was said and which hypothesis holds among the set of alternatives under
consideration. Suppose we are studying a pension reform legislated in a developing country, and
a close advisor to the president tells us: “Congress was willing to sit down and negotiate a�er the
president explained to the public that ‘therewill be nomoney for people to retire in five years if we
don’t do the reform now.”’ We might consider two rival hypotheses: H1 = the legislation passed
because the president made compelling public appeals that put pressure on congress to approve
the reform, and H2 = the reform passed because the president’s chief of sta� bribed members of
congress. In the world of H1, what the informant has said is true and accurate, whereas in the
world of H2, the informant has provided incorrect information.

� In other words, if E = “The scholar observed E0” then asking “what is the probability that E is true given H ” is equivalent
to asking “what is the probability of observing E0 ifH is true.” We sometimes elide the extra verbiage in E and use E0 as a
shortcut.

� In our usage, “the world ofH ” defines a family of possibilities whereH holds, but various contingencies consistent withH
(whichmight constitute evidence or clues)may ormay not occur. Othersmight describe these asmultiple possible worlds
(Barrenechea and Mahoney ����).
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Testimonial evidence inprocess tracing isbestanalyzedby including thesource in thedefinition
of the evidence. In other words, evidence E should typically take the form “source S stated X .”
For example, we might have E = An article in a le�-leaning newspaper reported X . We can then
directly evaluate the likelihood of this evidence given a specific hypothesis. Our background
information will include assessments of the source’s knowledgeability and incentives to reveal or
distort the truth under a particular hypothesis, as well as a range of salient contextual clues (e.g.
body language and intonation for interviews). Revisiting the pension reform example above and
takingE = A close presidential advisor told us in an interview: “Congresswaswilling to sit downand
negotiate a�er the president explained. . . ,” we might judge P (E ` H1I ) to be high, because the
informant has few incentives to withhold or distort the truth in this world. Under the corruption
hypothesis, instrumental incentives could easily compel the informant to tell the (incorrect)
story about the president’s public appeal, so E is not unexpected, but the value we assign to
P (E ` H2I ) will depend on our rapport and trust in the informant, as informed by our background
information.
These guidelines for assessing testimonial evidence follow Jaynes (����, p. ���), who

emphasizes that the new information we learn in both science and politics is that a source has
claimed some facts, not the purported facts themselves. Contrary to this best practice, Beach
and Pedersen (����, pp. ���–���) regard the statement X as the evidence and attempt to assess
the probability that X is accurate as an additional, distinct component of the analysis in a way
that is hypothesis independent. This approach cannot work, because in general, the accuracy
of information X must depend on the hypothesis under consideration (see Appendix B for a
mathematical elaboration).

�.�.� Condition on previously incorporated evidence
When the total body of evidence E consists of multiple observations E1–EN , we can decompose
the likelihood into a product as follows:

P (E ` Hk I ) = P (E1E2 · · · EN ` Hk I ) = P (EN ` E1E2 · · · E(N�1)Hk I ) P (E1E2 · · · E(N�1) ` Hk I ) = · · ·
= P (EN ` E1 · · · E(N�1)Hk I ) · · · P (E2 ` E1Hk I ) P (E1 ` Hk I ), (�)

because the product rule allows us to write the joint probability of A and B as P (AB ) =
P (A ` B )⇤P (B ). The right-hand side of the Equation (�) is essentially a product of likelihoods for
each observation Ex , with the nuance that previously analyzed evidence must be incorporated
along with I as conditioning information. In other words, the likelihood for Ex must be assessed
conditional not only on a hypothesis and the background information, but also on all evidence
from the current problem that we have previously incorporated, Eprev. We must therefore ask
if Ex is any more or less likely given that we already know Eprev, beyond whatever Hk and
I imply.
Conditioning on previously incorporated evidence requires careful thought about logical

dependence between Ex and Eprev under each hypothesis. Logical dependence is distinct from
causal (or physical) dependence, in that Eprev need not exert any causal influence on Ex for it to
a�ect our degree of belief in Ex . Consider a textbook example of drawing without replacement
from an urn containing two red marbles and one black marble. Suppose we close our eyes, draw
one marble from the urn, and set it aside without looking. We then repeat the process and draw
a second marble from the urn. We are interested in the probability that the first draw produced a
redmarble, P (E1R ` I ). Before looking at either marble taken from the urn, P (E1R ` I ) = 2/3. If we
observe the secondmarble drawn from the urn and discover that it is black, we gain information
that is highly relevant for inferences about the color of the firstmarble—in light of this information,
we become certain that the firstmarble is red: P (E1R `E2BI ) = 1. The outcome of the second draw

Tasha Fairfield and Andrew E. Charman ` Explicit Bayesian Analysis for Process Tracing: Guidelines,
Opportunities, and Caveats ���
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can in no way exert a causal influence backward in time on the outcome of the first draw; the
dependence is entirely logical in nature. Causal interactions between systemsor causal influences
in their common past can of course lead to logical dependence, but in a Bayesian framework,
it is essential to remember that conditional probabilities reflect logical dependencies between
propositions, not physical connections.
Returning to social science, suppose an informant interviewed in December ���� tells a story

X , which we will denote as evidence EInf(X ), and a news article from May ���� reports a similar
story, denoted as evidenceENews(X ). Supposewe conduct andanalyze the interview first, and then
subsequently discover the news article, such that E1 = EInf(X ) and E2 = ENews(X ). In this case, E1

cannot have any causal e�ect on E2—what the informant has told us cannot possibly influence a
news article written seven months earlier. Nevertheless, P (E2 ` E1HI ) will not equal P (E2 ` HI ).
Whether P (E2 ` E1HI ) is higher or lower than P (E2 ` HI ) may depend on the hypothesis H . The
point is that ENews(X ) and EInf(X ) are logically dependent given possible causal connections that
might have occurred in the past. For instance, our informant may have learned X from reading
the news article, so under many hypotheses, we would be less surprised to encounter the article
a�er talking to the informant, in which case P (E2 ` E1HI ) > P (E2 ` HI ).
It is also important to note that dependence (or independence) is not a physical property of

our sources—e.g. the newspaper vs. the informant in the example above—notwithstanding what
might be suggested by common advice to seek “independent sources of evidence.”�� Instead, it is
a logical relationship between pieces of evidence given a specific hypothesis. For any two pieces
of evidence—which should include information about the source—it is almost always possible
to concoct some hypothesis under which they are dependent. Drawing on di�erent sources and
distinct types of information is certainly good practice, but it does not absolve us from thinking
carefully about potential logical dependence among the data. The degree to which one source
corroborates another depends on the hypothesis under consideration.
Conditioning on previously incorporated evidence is critical for inference—the imperative

emerges directly from the mathematics of probability theory. However, reasoning about logical
dependence in qualitative research can be extremely challenging. Evidence can be connected in
arbitrarily complex ways; Ex and Ey may even be dependent in multiple ways, some of which
might lead us to raise P (Ex `Hj Ey I ) relative to P (Ex `Hj I ), whereas others might lead us to
lower P (Ex `Hj Ey I ) relative to P (Ex `Hj I ). Moreover, evidence may be dependent under some
hypotheses but independent under others. In practice, we should aim to do the best we canwhile
recognizing that it may not be feasible to carefully handle multiple nuanced dependencies in the
data.

�.�.� Sequence the evidence as convenient
The rules of conditional probability imply that the order of the evidence does not a�ect the
final posterior probabilities. Using the product rule of probability and commutativity, the joint
likelihood of two pieces of evidence can be written in any of the following equivalent ways:

P (EAEB ` HI ) = P (EBEA ` HI ) = P (EA ` EBH I ) P (EB ` HI ) = P (EB ` EAH I ) P (EA ` HI ). (�)

Some literature in thepsychological Bayesian tradition introduces nonstandard rules for updating
probabilities, implying that the order inwhich evidence is analyzeddoesmatter (e.g. Je�rey ����).
However, such approaches necessarily violate the fundamental rules of probability (Equation (�))
and conflictwith thenotionof rationality that lies at theheart of logical Bayesianism—information
incorporated in logically equivalentways should lead to the same conclusions. If in practicewe do

�� E.g. Beach and Pedersen (����, p. ���), Bennett and Checkel (����, pp. ��–��).
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not arrive at the same posterior probabilities upon analyzing the evidence in a di�erent order, we
have made amistake somewhere in our reasoning that needs to be corrected.
Because we are free to consider the evidence in any order, we can look for sequences that

facilitate conditioning on previously incorporated evidence when assessing likelihoods. Placing
strongly discriminating evidence last can preclude having to condition other pieces of evidence
on the conjunction of a hypothesis and an observation that is extremely implausible under
that hypothesis—a di�icult mental exercise that requires imagining very surprising flukes or
coincidences. Incorporating highly decisive evidence last can also obviate careful conditioning on
previous evidence, because the likelihood ratios will be extremely large regardless. On the other
hand, if the evidence is decisive enough,we could incorporate it first andbedone, since additional
evidence will contribute only marginally to our posteriors.��

�.� Logarithmic scales for probabilities
Whereas most research on Bayesian process tracing assigns values to probabilities on essentially
linear, o�en course-grained scales (e.g. Rohlfing ����, p. ��), we advocate a logarithmic scale for
odds and likelihood ratios, which is standard practice in the natural sciences and information
sciences. Using a logarithmic scale, in conjunction with an analogy to sound, better leverages
intuition, enhances consistency when working with qualitative information, and may facilitate
intersubjective agreement.
This recommendation is grounded in psychophysics, which shows that sensory perception

tends to be a logarithmic function of stimulus strength. Stated in di�erential terms, a just-
noticeable di�erence in the loudness of sound, brightness of light, or pressure on the skin is
proportional to themagnitude of the stimulus. This relationship (theWeber–Fechner Law), which
works well for a wide variety of stimuli and a large range of magnitudes, is sensible given that
humans experience stimuli of highly varied intensity. By building in a logarithmic scale, evolution
has increased thenervous system’s dynamic range. Given this characteristic featureof thenervous
system, a logarithmic scale ismorenatural thana linear scale formeasuring andanalyzing sensory
inputs. Sound, for example, is measured in decibels (dB), such that increasing the intensity of the
sound wave by a factor of ten corresponds to an additive increment of �� dB.
For similar reasons, logarithmic scales were introduced to assess perceptions of uncertainty in

probabilistic inference. Good’s (����)weight of evidence in favor of one hypothesis compared to a
rival, measured in decibels, is proportional to the logarithm of the likelihood ratio:

WOE (Hi : Hj ) = 10 log10[P (E ` Hi I )/P (E ` Hj I )]. (�)

The weight of evidence describes the probative value of the evidence—how strongly it
discriminates between two rival hypotheses. Good (����) contends that a change in weight of
evidence of one decibel, for example fromeven odds of �:� to odds of around �:�, is as fine-grained
as we can reliably quantify our degree of belief in competing hypotheses. A change in probability
from �� percent to �� percent corresponds to an increase in log-odds of about � dB, which is
salient, but in the natural sciences, cogent evidence might regularly lead to swings of several
tens of decibels. Notice that in Bennett’s (����, p. ���) illustration of a smoking-gun test, where
P (E ` H ) = 0.2 and P (E ` ⇠H ) = 0.05, theweight of evidence is only �dB—salient, but not decisive
enough by Good’s standards to serve as a smoking gun for H .
Measuring log-odds in decibels lets us leverage everyday experience with sound, while

providing a quantitative underpinning for Gull’s metaphor of Bayesian inference as a “dialogue
with the data”—in essencewe can askwhether the evidence iswhispering or shouting in favor of a

�� See Appendix A for further exposition of these considerations as applied to our case study.

Tasha Fairfield and Andrew E. Charman ` Explicit Bayesian Analysis for Process Tracing: Guidelines,
Opportunities, and Caveats ���



�%

��
��

��
��

� 
��

��
""
�!

���
%
%
%
��
��

� 
��

��
��

 �
��

� 
��

��
��

��
��

��
��

��
��

���
��

��
�

��
!�
��
��

��
��

�	
�


��
��

��

�

�"
��

��
�	

��
��

�!
#�

��
�"

�"�
�"�

��
��

�
� 

��
��

��
� 

��
"�

 �
!�
��

�#
!�

���
$�

���
��

��
�"

��
""
�!

���
%
%
%
��
��

� 
��

��
��

 �
��

� 
��

"�
 �

!�
��

""
�!

���
��

���
 �

��
��

��
�


��
��

��
��


�
�	



Table �. Typical Sound Levels (dB). Reference scales vary across sources. See for example: www.osha.
gov/dts/osta/otm/new_noise/.

�� Adult hearing threshold; rustling leaves, pin drop
�� Whisper
�� Quiet bedroom or library, ticking watch
�� Su�icient to wake a sleeping person
�� Moderate rainstorm
�� Typical conversation
�� Noisy restaurant, common TV level
�� Busy curbside, alarm clock
�� Passing diesel truck or motorcycle
��� Dance club, construction cite
��� Rock concert, baby screaming

given hypothesis. In acoustics, the minimal noticeable change is roughly � dB. A change of � dB is
clearly noticeable, while an increase of �� dB is perceived as about twice as loud; �� dB is roughly
four times louder. Table � provides typical reference sounds in decibels.
In qualitative research, we suggest regarding decisive evidence that strongly favors one

hypothesis over a rival as roughly �� dB, the di�erence between a quiet bedroom and a
conversation—in other words, the data are “talking clearly.” Likewise, a very low prior log-odds
against a hypothesis relative to a more plausible rival could reasonably be set at ��� dB (Jaynes
����, pp. ��–���), the di�erence between a pin drop and a normal conversation.

�.� Inference via Bayes’ rule
The last step in explicit Bayesian process tracing entails applying Bayes’ rule to draw an
inference. When working with multiple pieces of evidence, we can successively apply Bayes’ rule
(Equation (�)), or we canmultiply likelihood ratios to conduct inference in a single step:

P (Hi ` EI )
P (Hj ` EI )

=
P (Hi ` I )
P (Hj ` I )

⇥ P (E1 ` Hi I )
P (E1 ` Hj I )

⇥ P (E2 ` E1Hi I )
P (E2 ` E1Hj I )

⇥ · · · ⇥ P (EN ` E1 · · · EN�1Hi I )
P (EN ` E1 · · · EN�1Hj I )

, (�)

which follows from Equations (�) and (�).
Taking the logarithm of the Equation (�) gives a particularly simple, additive form of Bayes’

rule—the posterior log-odds equals the prior log-odds plus the weight of evidence:

10 log10

"
P (Hk ` EI )
P (Hl ` EI )

#
= 10 log10

"
P (Hk ` I )
P (Hl ` I )

#
+WOE (Hk : Hl ). (�)

This formulation o�ers the computation advantage that weights of evidence are also additive:

WOE (Hk : Hl ) =WOE1(Hk : Hl ) +WOE2(Hk : Hl , E1) · · · +WOEN (Hk : Hl , E1 · · · EN�1), (�)

where wemust remember to condition on Eprev as appropriate.

� Empirical Example: Evaluating Weights of Evidence
Appendix A provides an explicit Bayesian analysis of a case study from Fairfield’s (����, ����)
research on tax policy change in Latin America. We compare Fairfield’s hypothesis against three
rivals in light of six key observations from the case narrative. We assign priors drawing on our
background information, evaluate likelihoods for each piece of evidence, and use Bayes’ rule

Tasha Fairfield and Andrew E. Charman ` Explicit Bayesian Analysis for Process Tracing: Guidelines,
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to derive posterior probabilities. We then conduct Bayesian sensitivity analysis to ascertain how
much our conclusions depend on choices of priors and values of likelihood ratios.
This section overviews our analysis of weights of evidence—the most important step in

Bayesian inference—for two pieces of case evidence. Assessing weights of evidence, which
involves ratios of likelihoods under alternative hypotheses, lets us ignore details that have a
common e�ect on likelihoods irrespective of which hypothesis is true. For instance, we might
judge the amount of e�ort expended to obtain an interview with an informant or to gain access
to an archive to be largely independent of which hypothesis is correct. Similarly, this approach
minimizes e�ort required for conditioning on previous evidence when an argument can be
made that dependence does not di�er much across hypotheses. Working directly with ratios
also helps leverage intuition—while we might reason that Ex makes us ten times (�� dB) more
confident in H1 vs. H2, we may be less comfortable assigning value to each of the respective
likelihoods.
Fairfield’s case study examines a Chilean reform that revoked a regressive tax subsidy. She

argues that an “equity appeal,” made during a presidential race in which inequality had assumed
unusually high salience, compelled the right-wing opposition coalition to accept the reform in
order to avoid electoral punishment. During the ���� campaign, the right’s presidential candidate
blamed Chile’s persistent inequality on the governing center-le� coalition; the incumbent
president responded by linking the tax subsidy to inequality and publicly challenging the
opposition to support the reform. We denote this equity-appeal hypothesis as HEA. Below, we
consider just two rival hypotheses: HI = The opposition accepted the reform because Chile’s
institutionalized party system motivates cross-partisan cooperation and consensual politics,
and HCC = The opposition accepted the reform because its core constituency—business and
upper-income individuals—had a weaker material interest in defending the tax subsidy in ����
compared to previous years, due to a decline in the assets eligible for the subsidy. We assume
as part of our background information that HEA, HI , and HCC are mutually exclusive and
exhaustive.

E1 =Governing-coalition informants told the investigator that the center-le� coalition discussed
including ameasure to eliminate the tax subsidy inmultiple prior tax reforms, but thatmeasurewas
ruled out as infeasible on every such occasion due to resistance from the right coalition.

WOE1(HEA : HI ) = 30 dB. We judge E1 to be speaking clearly in favor of HEA relative to
HI—wewould be far more surprised to observe E1 in a world where HI is the correct hypothesis.
In the world of HEA, the equity appeal altered the right’s behavior from resisting the reform in
previous years to accepting the reform in ����. E1 is consistent with this scenario. In contrast, if
institutions produced consensus on eliminating the tax subsidy in ����, they should also have
done so in previous years, since our background information includes the fact that institutions
did not change during the intervening period. If eliminating the tax benefit had been discussed
and ruled out on only one occasion, we would be less surprised; however, E1 is a conjunction of
multiple instances in which institutions failed to promote right-party cooperation.

WOE1(HEA : HCC ) = 3 dB. While E1 is consistent with both HEA and HCC , we view the weight
of evidence as weakly favoring HEA. In the world of HCC , the right accepted the reform in ����
because its core constituency no longer had sizable assets that benefitted from the tax subsidy,
even though our background information (I ) indicates that the right tended to resist evenmodest
tax increases as a matter of principle. To avoid a contradiction between HCC and I , we must
assume that by ����, the asset decline had pushed the right past its threshold of resolve for
resisting the reform. However, underHCC and I , we have no clear prediction about when exactly
we would expect the tax subsidy to be eliminated, whereas under HEA and I , we have a clear
rationale for why the reform occurred in ���� as opposed to some years earlier or later. Under
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HCC , the observed timeline is just one of severalmore or less equally plausible scenarios inwhich
the successful reform occurs in a di�erent year. These multiple possibilities reduce the likelihood
of the specific timeline observed.

E1 illustrates the importance of comparing specific alternative hypotheses rather than
attempting to evaluate theworking hypothesis directly against its full logical negation. Section �.�
emphasized that assessing likelihoods conditional on an ill-specified ⇠H may be essentially
impossible. ForE1, theweightsof evidence in favorofHEA relative to the two rivals arenot equal. If
we try to directly evaluateWOE1(HEA : ⇠HEA), howwouldwementally inhabit a world as vague
as ⇠HEA, which is really an amalgamation of two very di�erent kinds of worlds? Only a�er we
have decomposed⇠HEA intoHI andHCC canwe reasonmeaningfully about weights of evidence
by inhabiting each alternative world in turn.

E2 = A finance ministry o�icial told the investigator that the tax subsidy “was a pure transfer of
resources to rich people. . . . It was not possible for the right [coalition] to oppose the reform a�er
making that argument about inequality.” Likewise, the former President told the investigator that
the tax subsidy “never would have been eliminated if I had not taken [the opposition candidate] at
his word” when the latter publicly professed concern over inequality.

We have aggregated two interview excerpts into a single piece of evidence, because they are
strongly dependent under any hypothesis. Regardless of which explanation is correct, we expect
that the president and financeministry o�icials have communicated extensively and share similar
analyses of why the right accepted the reform. Our aggregation decision also follows the rule of
thumb from Section �.�; we have similar information from similar sources.

WOE2(HEA : HI , E1) = WOE2(HEA : HCC , E1) = 10 dB. E2 provides glimpses of the
causalmechanismunderlyingHEA by referring to theexchangebetween theopposition candidate
and the president that culminated in the equity appeal. Because E2 makes the government
appear savvy ande�ective at achieving socially desirable goalswhile highlighting theopposition’s
resistance to redistribution, we see little reason for the government to conceal this information if
HEA is true. The likelihood P (E2 ` HEAE1) should therefore be high. In an alternative world where
either of the rival hypotheses is true, government informants might nevertheless have incentives
to attribute the opposition’s support for the ���� reform to the equity appeal, because this story
portrays the government in a positive light and the opposition in a negative light. However, our
background information gives us confidence in these informants’ knowledgeability, analytical
judgments, and sincerity. Balancing these considerations,we judgeE2 to favorHEA over each rival
by �� dB.

E2 illustrates that the accuracy of the information provided by the sources depends on the
hypothesis (Section �.�.�). UnderHEA, the informants’ statementsmust be taken as true, whereas
under the rivals, the statements are necessarily false—the informants are eithermistaken or lying.

� Improving Inference and Analytic Transparency
In the context of e�orts to establish process tracing as a rigorous methodology and growing
attention to analytical transparency, several prominent scholars have argued that explicitly
employing Bayesian analysis will make inferences more systematic and more amenable to
scrutiny (Rohlfing ����; Bennett ����, p. ���; Humphreys and Jacobs ����). We concur that
explicit Bayesian analysis, if carefully implemented, o�ers several important advantages and
opportunities for improving inference. This approach forces us to clearly identify and carefully
consider all salient evidence as well as critical elements of our background information. It
precludes subconsciously focusing on a favored working hypothesis by requiring us to consider
states of the world characterized by rival hypotheses. Explicit Bayesian analysis may also
“eliminate the considerable ambiguity in many verbal phrases used to convey probabilities”

Tasha Fairfield and Andrew E. Charman ` Explicit Bayesian Analysis for Process Tracing: Guidelines,
Opportunities, and Caveats ���
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Table�. Assessing thepotential of explicitBayesiananalysis.

Advantages and opportunities Caveats and limitations

• Ensures clear identification and careful
assessment of salient evidence and key
elements of the background information

• Ensures consideration of alternative
hypotheses

• Facilitates more e�ective communication of
degrees of belief

• May help inferences approximate Bayesian
logic more closely than untrained intuition

• Probabilities cannot be
unambiguously specified

• Requires substantial training
• Intractable beyond relatively

simple causal models
• May be unduly burdensome in

practice
• Explicit Bayesian analysis and

transparency are not synonymous

(Bennett ����, p. ���); in particular, the decibel scale we advocate could help communicate our
degrees of belief more e�ectively. With practice, the guidelines elaborated in Section �may foster
more systematic andmore logically rigorous inferences compared to untrained intuition.
However, explicit Bayesian analysis is clearly a “very tall order” (Humphreys and Jacobs ����,

p. ��), especially for evidence-intensive process tracing. As such, we must weigh the advantages
against thepotential limitationsanddrawbacks (Table�).Webeginbydiscussingcaveatsbasedon
our experience of elaborating Appendix A and then assess when explicit Bayesian process tracing
will be more valuable or less valuable in light of the challenges.

�.� Caveats and limitations
The foremost challenge of explicit Bayesian process tracing entails assigning numerical values
to all probabilities (priors and likelihoods). In the natural sciences, a strong underlying theory
and a description of the measurement apparatus (along with various simplifying assumptions)
lead to a specific error model and thereby a likelihood function that unambiguously specifies
probabilities for the various possiblemeasurements thatmay be observed. In the social sciences,
there is no clear procedure for translating complex, narrative-based, nonreproducible, o�en
qualitative information into precise probability statements. E�orts to explicitly apply Bayesian
learning in qualitative social science will inevitably run up against the di�iculty of quantifying
likelihoods without precision or objectivity. Specifying a range of probabilities rather than a
precise value (Humphreys and Jacobs ����) may be adequate for some purposes, but ultimately,
it simply relocates the arbitrariness of assigning numerical values.�� Even froma purely pragmatic
perspective, this sort of approach has limited value, because propagating interval probabilities
through Bayes’ rule is nontrivial when working with multiple hypotheses. While words used to
express probability in common parlance are certainly ambiguous, quantification may simply
disguise that ambiguity with false precision.
A second caveat is that substantial trainingmay be necessary before explicit Bayesian analysis

can improve upon intuition. Our teaching experience thus far indicates that a day or two of
intensive workshops is not adequate to successfully apply this approach. In fact, as part of the
learning process, reasoning may get worse before getting better. While the metaphor of weighing
evidence is in someways intuitive, assessing the weight of evidence changes the way that we use
our intuition. Practice will be needed to master this fundamental aspect of Bayesian thinking.
Third, explicit Bayesian analysis becomes intractable beyond fairly simple causal models,

which are rarely adequate in social science. Recall that Bayesian analysis entails specifying

�� Toavoid subjective likelihoodassignments,Humphreys andJacobs (����) includepriors on theprobative valueof process-
tracing clues; yet the problem then becomes how to translate background knowledge and theoretical expectations into
an appropriate prior distribution. Moreover, if weworkwithin a single case, only averages over priors for clue probabilities
matter, so their approach reduces to specifying likelihoods.

Tasha Fairfield and Andrew E. Charman ` Explicit Bayesian Analysis for Process Tracing: Guidelines,
Opportunities, and Caveats ���
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mutually exclusive hypotheses, which is nontrivial and may require oversimplification. Some
of the hypotheses we assess against Fairfield’s (����) explanation involve causal mechanisms
that—in the realworld—couldpotentially operate simultaneously or in interaction. Assessing such
possibilities requires elaborating a more complex but still mutually exclusive hypothesis space,
which would aggravate the challenges of assigning numerical values to likelihoods. By contrast,
in thenatural sciences, Bayesiananalysis is usually applied to very simplehypothesis spaces (even
if the underlying theory and experiments are highly complex); for example:H1 = the Higgs boson
mass is 124–126 GeV/c2, H2 = the mass is 126–128 GeV/c2, etc.
Fourth, practical considerations may restrict the use of explicit Bayesian analysis. Appendix A,

which includes various cross checks to ensure that likelihoods are sensible and reasonably
consistent across the problem, exceeds the length of Fairfield’s (����) article, which included
three additional case studies; Fairfield’s (����) book includes over �� case studies. Assessing
weights of evidence (likelihood ratios) insteadof absolute likelihoods (Section�) is amore feasible
if somewhat less careful approach. But either way, explicit Bayesian analysis cannot replace
case narratives, which are an e�ective and e�icient way to holistically communicate context,
evidence, and analysis. As such, requiring scholars to provide explicit Bayesian analysis for all of
their cases, above and beyond their narrative work, would create heavy disincentives for process
tracing.
Finally, explicit Bayesian analysis should not be directly equated with transparency. On the

one hand, this approach can obscure rather than clarify inference, especially if we disaggregate
the evidence too finely and unpack our analysis into too many steps—we may become lost in
minutiae. Moreover, making too many steps explicit may lull readers into uncritically accepting
or glossing over the author’s reasoning, rather than assessing whether they can arrive at the
conclusions through their own independent logical pathways, thereby undermining the scholarly
scrutiny of inferences that analytical transparency is intended to promote. Even mathematicians
routinely skip steps in published proofs; readers must fill in and verify themselves, which
provides an important cross-check. On the other hand, transparency does not require assigning
numerical values to probabilities and applying Bayes’ rule to derive an inference. Scholars can
make the assumptions and logic behind their inferences explicit without resorting to numbers.
While these considerations do not necessarily constitute an argument against explicit Bayesian
process tracing, they clarify that transparency is not necessarily an argument for adopting this
approach.

�.� Applications
Given the caveats, when might explicit Bayesian analysis prove most useful? We begin with
situations where we expect this approach to be of limited value and proceed toward those that
pro�er higher value. If all observations strongly favor a particular hypothesis over the rivals,
explicit Bayesian analysis is unlikely to improve on intuition. Scholars can explain why the
evidence is decisive without quantifying probabilities, and if the evidence is indeed compelling,
readers should recognize it as such on its face. Likewise, if the evidence has weak probative
value, explicit Bayesian analysis may simply confirm the realization we would have obtained
intuitively—the evidence is insu�icient to strongly support any particular hypothesis (unless we
already had strong priors or cannot think of reasonable alternatives).
Moderate gains for inferencemayarisewhen the evidence is complex anddoesnot clearly favor

a single hypothesis. On the one hand, when some observations favor one hypothesis whereas
others favor a rival, it may be di�icult to intuitively ascertain which provides the best explanation.
Explicit Bayesian analysis helps us keep track of nuances, consistently assess the weight of
evidence for each observation, and systematically aggregate inferences across observations. On
the other hand, there is a danger when evidence is ambivalent that conclusions derived via

Tasha Fairfield and Andrew E. Charman ` Explicit Bayesian Analysis for Process Tracing: Guidelines,
Opportunities, and Caveats ���
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explicit Bayesian analysismaybedriven by arbitrariness inherent in assigning numerical values to
probabilities. Natural scientists would only believe that noisy data accumulates into a significant
signal if the errormodel iswell understood; in qualitative social science, analogous situationsmay
rarely arise. Almost by definition, if the evidence pulls in di�erent directions, small changes in
probabilities may swing the inference in favor of one hypothesis or another.
Nevertheless, explicit Bayesian process tracing in such cases may be merited for the sake of

analytical transparency and informing future research. Regarding transparency, if we must make
inferential claims on the basis of ambivalent or weak evidence—if important questions are at
stake�� and obtaining better evidence is infeasible—explicit Bayesian analysis can at least clarify
the basis on which those claims rest and facilitate debate among scholars. Looking forward to
future data-gathering opportunities, explicit Bayesian analysis could also elucidate what kinds of
additional evidence would bemost useful for strengthening the inference.
We envision a more valuable role for explicit Bayesian analysis in identifying the locus

of contention when scholars disagree on inferences. As Hunter (����, p. ��) argues, through
Bayesian analysis, “the sources of the disagreement can be determined much more easily than
in normal verbal analysis.” Explicit Bayesian analysis provides a clear framework for pinpointing
disagreements: Do they arise from di�erent background information and assumptions (e.g. a
source’s motives or sincerity), di�erent priors, or di�erent assessments of likelihoods? If the
problem lies with the probative value of evidence, which observations are most contested, and
why? For these purposes, numbers serve primarily to stimulate discussion about inferential
logic, assumptions, and judgments, and the ad hoc component of quantification will be less
problematic. Our Bayesian sensitivity analysis in Appendix A illustrates how this clarification and
adjudication process might work; we show that to remain unconvinced, a skeptical reader would
need to have extremely strong priors against the equity-appeal explanation and/or contend that
the evidence is far less discriminating than we have argued.
We also foresee a valuable pedagogical role for explicit Bayesian analysis. Reading examples

and conducting exercises can train intuition to follow this inferential logic more systematically,
thereby improving traditional narrative-based process tracing. For example, one of the most
salient lessons from our empirical case application is that the weight of evidence depends
by definition on which hypotheses we compare; we cannot judge how decisive the evidence
is with respect to our working hypothesis alone, without considering concrete alternatives.
Thinking in terms of the weight of evidence, even without assigning numbers, may help scholars
identify their most discriminating observations. More generally, many of our guidelines for
explicit Bayesian analysis (summarized in Table �) have direct analogs for more heuristic
Bayesian reasoning in narrative-based process tracing—from comparing clearly specified
mutually exclusive hypotheses and explaining why our background information suggests some
explanations and justifies disregarding others from the outset, to considering how a source’s
potential biases and instrumental incentives might change under rival hypotheses, and thinking
about logical dependencies among the evidence when drawing inferences.
Relatedly, elaborating an explicit Bayesian appendix for an illustrative case from one’s own

research might help establish process-tracing “credentials.” As much as we try to make our
analysis transparent,multiple analytical stepswill inevitably remain implicit. Qualitative research
drawsonvast amountsofdata, o�enaccumulatedovermultiple yearsof fieldwork. There is simply
toomuchevidenceand toomuchbackground information that informshowevidence is evaluated
to fully articulate or catalog. Qualitative research is not replicable as per a controlled laboratory
experiment; at some level, wemust trust that scholars havemade sound judgments. To that end,

�� Hunter (����) explores military applications.

Tasha Fairfield and Andrew E. Charman ` Explicit Bayesian Analysis for Process Tracing: Guidelines,
Opportunities, and Caveats ���
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Table�. Guidelines forexplicitBayesianprocess tracing.

Hypotheses and Priors Articulate clearly specified, mutually exclusive hypotheses; do
not attempt to directly compare H vs. ⇠H

Choose an option for assigning prior probabilities:
(a) Specify priors that aim to reflect background information as

best as possible
(b) Assign equal priors following the “principle of indi�erence”
(c) Conduct the analysis using multiple di�erent prior

distributions

Evidence Treat information from distinct types of sources as separate
pieces of evidence

To facilitate reasoning, seek a middle ground between
aggregating evidence into overly course-grained pieces and
disaggregating into excessively fine-grained pieces

Likelihoods Mentally “inhabit” the world of each hypothesis
P (E ` HxEprevI ) Assess the likelihood that “source S stated X,” considering that

biases and instrumental incentives may change under rival
hypotheses

Condition likelihoods on all previously incorporated pieces of
evidence, thinking carefully about logical dependence

Sequence the evidence as convenient to facilitate reasoning
about logical dependence

Identify key elements of the background information and explain
how they inform likelihoods

Simplify analysis by evaluating likelihood ratios and/or weight of
evidence

Logarithmic Scales Assign numerical values to probabilities on a logarithmic scale
Use an analogy to sound decibels to enhance consistency and
leverage intuition

scholars might use an explicit Bayesian illustration to demonstrate their care in reasoning about
the evidence and the inferences it permits.

Supplementarymaterial
For supplementary material accompanying this paper, please visit
https://doi.org/��.����/pan.����.��.
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